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Introduction - Serverless and FaaS

> Short-running workloads
e Often not optimized by Just-In-Time (JIT) compilation due to its overheads in
the startup
> The first execution of the workload on a machine requires the initialization of the
execution environment
® The code is either fully downloaded or incrementally downloaded using a
Network File System (NFS) upon page faults
e Initialization may take place several times
o To avoid wasting resources, the service typically retains the execution
environment only for a certain period of time
® Theidle program is removed

o Optimization is crucial to lower costs and maximize throughput



Goal and Focus

> Qur goal is improving the locality of the executed code and accessed objects to
reduce page faults and hence 1/0 traffic
> We focus on GraalVM Native Image [1] which allows creating a binary file from a Java
application
e Machine code emitted by leveraging the Graal compiler as an Ahead-of-Time
(AOT) compiler
e Executed without instantiating a Java Virtual Machine (JVM)
® The binary contains not only the code to be executed, but also a snapshot of the

pre-initialized heap memory

[1] Wimmer et al., “Initialize Once, Start Fast: Application Initialization at Build Time”. OOPSLA’19.



Visualization of the Code Section (1)

> Code section of a Native-Image binary
> Each cell represents a page

® Green: caused page faults

® Red: prepaged by the OS

e Black: not fetched

(a) Regular binary



Visualization of the Code Section (2)

(a) Regular binary (b) Binary optimized by employing the cu strategy




Contributions

We propose a profile-guided methodology to improve the startup time of Native
Image binaries by reordering the code and the heap-snapshot sections of the binary
® We first generate an instrumented binary of the program to collect a method
invocation trace and an object access trace
® Using the trace, we create a second, profile-driven optimized binary where used
methods and objects are placed in contiguous areas
We design two code-ordering strategies and three heap-ordering strategies
® Divergences in inlining decisions between builds of the same program
e Matching objects from a profile against the objects in the profile-guided build
We evaluate our implementation showing that it reduces page faults and improves

runtime performance by 1.61x and 1.59x, respectively



Background & Challenges (1)

> The Graal compiler performs transformations and optimizations on a portion of code
provided as input, called compilation unit (CU)
® A CU consists of a root method and the methods that were inlined into the CU
> Native Image employs a points-to analysis to decide which code is reachable (and
hence must be included in the binary) and saturation [1] to improve compilation
speed
e Binaries include more code than reachable or executed at runtime
> The inclusion of seemingly unrelated code (and instrumentation code) in the binary
may significantly impact (code-size driven) inlining decisions
e Different builds contain different CUs, causing divergences between (the
instrumented and) the regular images

® Inaccuracies in the profiles and hence in the profile-driven images

[1] Wimmer et al., “Scaling Type-Based Points-to Analysis with Saturation”. PLDI'24.



Background & Challenges (2)

The heap snapshot is obtained after concurrently executing the static initializers of

the classes that are deemed to be reachable in the startup process of the VM

Heap snapshots typically differ across compilations
o For example, due to different inlining decision that affect Partial Escape

Analysis

While CUs can be mapped across builds using the signature of their root methods,

objects do not offer APIs that allow mapping their identities across builds

For example, the hash computed by System.identityHashCode on the
semantically same object most likely differs across builds
It is challenging to match the object-access trace entries with the

heap-snapshot objects of the optimized binary



Profile-guided Binary Reordering (1)
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> Qur goal is to improve the existing profiles collected by instrumented Native-Image
binaries, and use the augmented profiles to generate an optimized binary
® Order CUs in the .text section

® Order objects in the .svm_heap section



Profile-guided Binary Reordering (2)
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e We perform instrumentation ahead-of-time
® To map object identities across builds, we generate object identifiers before
writing the image heap
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Profile-guided Binary Reordering (3)
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> Instrumented-image execution time
® We collect invocation trace and an object access trace
® \We post-process the traces to generate profiles that can be exploited by the
optimized-image build process
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Profile-guided Binary Reordering (4)
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> Optimized-image build time
® \We order code according to the ordering reported in the code-ordering profiles
e We order objects according to the ordering reported in the heap-ordering profiles

o  We match the identifiers in the profiles with the newly computed identifiers
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Code Ordering (1)

> Reducing code-related page faults
e Given two methods: A and B
e |f the first invocation of method A appears in the trace before the first invocation
of method B, method A should be stored in the binary before method B
> |n practice:
® The binary contains several copies of the same method due to code duplication
and inlining
e Copies may be different across images

® Given a choice of CUs, it is challenging to determine the optimal ordering

13



Code Ordering (2)

> We implement and evaluate two code-ordering heuristics:
® CU ordering: we order the CUs based on the invocation order of the root
methods
e Method ordering: we order the CUs based on the invocation order of all the

methods
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Heap Ordering

> Heap-ordering strategies compute 64-bit object identifiers (IDs) to match the object-
access trace entries with the heap-snapshot objects of the optimized binary as
accurately as possible
e Incremental ID: leverages the heap object graph traversal order
o Assigns incremental IDs to object instances in object encounter order when
traversing the heap object graph
e Structural Hash: leverages the objects content
o Analyzes the object structures and hashes the content of all their fields
® Heap Path: leverages the inclusion reason in the heap snapshot
o Hashes the first path in the heap object graph (starting from a root) to that

object found by Native Image
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Profiling

> Tracing profiler
® Per-thread sequence of executed events
e Compiler IR-level instrumentation
o Increases profile accuracy and lowers perturbation on compiler
optimizations [1]
e Code ordering
o CU/method entry events
e Heap ordering
o All the identifiers of the accessed Java objects (field/array accesses,

monitor acquisitions, etc)

[1] Basso et al., “Optimization-Aware Compiler-Level Event Profiling”. TOPLAS, 2023.
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Evaluation

> Performance evaluation of our implementation
® On the “Are We Fast Yet?” (AWFY) benchmark suite [1]
o To evaluate the improvements on the FaaS model
® On popular microservice frameworks: micronaut [2], quarkus [3], spring [4]
o To evaluate the improvements on the serveless model when employing

long-running processes

[1] Marr et al., “Crosslanguage Compiler Benchmarking: Are We Fast Yet?”. DLS'16.

[2] https:// micronaut.io/

[3] https://quarkus.io/
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Evaluation - Performance (1)
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Evaluation - Performance (2)
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Conclusions

> We proposed a profile-guided methodology to improve the startup time of Native
Image binaries by reordering the code and the heap-snapshot sections of the binary,
reducing |/0O traffic
> We described two code-ordering strategies and three heap-ordering strategies
e Divergences in inlining decisions between builds of the same program

e Matching objects from a profile against the objects in the profile-guided build

\

We implemented our methodology and ordering strategies in GraalVM Native Image
> We evaluated our implementation on the “Are We Fast Yet?” benchmark suite and
on widely-used microservice frameworks

e Effective in reducing page faults and improving runtime performance
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