
* Università della Svizzera italiana, Switzerland
† Oracle Labs

Matteo Basso*, Aleksandar Prokopec†, Andrea Rosà*, Walter Binder*

Improving Native-Image Startup Performance

CGO’25
March 5, 2025

Introduction - Serverless and FaaS

2

➢ Short-running workloads

● Often not optimized by Just-In-Time (JIT) compilation due to its overheads in

the startup

➢ The first execution of the workload on a machine requires the initialization of the

execution environment

● The code is either fully downloaded or incrementally downloaded using a

Network File System (NFS) upon page faults

● Initialization may take place several times

○ To avoid wasting resources, the service typically retains the execution

environment only for a certain period of time

● The idle program is removed

○ Optimization is crucial to lower costs and maximize throughput

➢ Our goal is improving the locality of the executed code and accessed objects to

reduce page faults and hence I/O traffic

➢ We focus on GraalVM Native Image [1] which allows creating a binary file from a Java

application

● Machine code emitted by leveraging the Graal compiler as an Ahead-of-Time

(AOT) compiler

● Executed without instantiating a Java Virtual Machine (JVM)

● The binary contains not only the code to be executed, but also a snapshot of the

pre-initialized heap memory

Goal and Focus

3
[1] Wimmer et al., “Initialize Once, Start Fast: Application Initialization at Build Time”. OOPSLA’19.

➢ Code section of a Native-Image binary

➢ Each cell represents a page

● Green: caused page faults

● Red: prepaged by the OS

● Black: not fetched

Visualization of the Code Section (1)

Visualization of the Code Section (2)

Contributions

6

➢ We propose a profile-guided methodology to improve the startup time of Native

Image binaries by reordering the code and the heap-snapshot sections of the binary

● We first generate an instrumented binary of the program to collect a method

invocation trace and an object access trace

● Using the trace, we create a second, profile-driven optimized binary where used

methods and objects are placed in contiguous areas

➢ We design two code-ordering strategies and three heap-ordering strategies

● Divergences in inlining decisions between builds of the same program

● Matching objects from a profile against the objects in the profile-guided build

➢ We evaluate our implementation showing that it reduces page faults and improves

runtime performance by 1.61× and 1.59×, respectively

Background & Challenges (1)

7

➢ The Graal compiler performs transformations and optimizations on a portion of code

provided as input, called compilation unit (CU)

● A CU consists of a root method and the methods that were inlined into the CU

➢ Native Image employs a points-to analysis to decide which code is reachable (and

hence must be included in the binary) and saturation [1] to improve compilation

speed

● Binaries include more code than reachable or executed at runtime

➢ The inclusion of seemingly unrelated code (and instrumentation code) in the binary

may significantly impact (code-size driven) inlining decisions

● Different builds contain different CUs, causing divergences between (the

instrumented and) the regular images

● Inaccuracies in the profiles and hence in the profile-driven images

[1] Wimmer et al., “Scaling Type-Based Points-to Analysis with Saturation”. PLDI’24.

Background & Challenges (2)

8

➢ The heap snapshot is obtained after concurrently executing the static initializers of

the classes that are deemed to be reachable in the startup process of the VM

● Heap snapshots typically differ across compilations

○ For example, due to different inlining decision that affect Partial Escape

Analysis

➢ While CUs can be mapped across builds using the signature of their root methods,

objects do not offer APIs that allow mapping their identities across builds

● For example, the hash computed by System.identityHashCode on the

semantically same object most likely differs across builds

● It is challenging to match the object-access trace entries with the

heap-snapshot objects of the optimized binary

Profile-guided Binary Reordering (1)

9

➢ Our goal is to improve the existing profiles collected by instrumented Native-Image

binaries, and use the augmented profiles to generate an optimized binary

● Order CUs in the .text section

● Order objects in the .svm_heap section

➢ Instrumented-image build time

● We perform instrumentation ahead-of-time

● To map object identities across builds, we generate object identifiers before

writing the image heap

Profile-guided Binary Reordering (2)

10

➢ Instrumented-image execution time

● We collect invocation trace and an object access trace

● We post-process the traces to generate profiles that can be exploited by the

optimized-image build process

Profile-guided Binary Reordering (3)

11

➢ Optimized-image build time

● We order code according to the ordering reported in the code-ordering profiles

● We order objects according to the ordering reported in the heap-ordering profiles

○ We match the identifiers in the profiles with the newly computed identifiers

Profile-guided Binary Reordering (4)

12

Code Ordering (1)

13

➢ Reducing code-related page faults

● Given two methods: 𝐴 and 𝐵
● If the first invocation of method 𝐴 appears in the trace before the first invocation

of method 𝐵, method 𝐴 should be stored in the binary before method 𝐵
➢ In practice:

● The binary contains several copies of the same method due to code duplication

and inlining

● Copies may be different across images

● Given a choice of CUs, it is challenging to determine the optimal ordering

Code Ordering (2)

14

➢ We implement and evaluate two code-ordering heuristics:

● CU ordering: we order the CUs based on the invocation order of the root

methods

● Method ordering: we order the CUs based on the invocation order of all the

methods

Heap Ordering

15

➢ Heap-ordering strategies compute 64-bit object identifiers (IDs) to match the object-

access trace entries with the heap-snapshot objects of the optimized binary as

accurately as possible

● Incremental ID: leverages the heap object graph traversal order

○ Assigns incremental IDs to object instances in object encounter order when

traversing the heap object graph

● Structural Hash: leverages the objects content

○ Analyzes the object structures and hashes the content of all their fields

● Heap Path: leverages the inclusion reason in the heap snapshot

○ Hashes the first path in the heap object graph (starting from a root) to that

object found by Native Image

➢ Tracing profiler

● Per-thread sequence of executed events

● Compiler IR-level instrumentation

○ Increases profile accuracy and lowers perturbation on compiler

optimizations [1]

● Code ordering

○ CU/method entry events

● Heap ordering

○ All the identifiers of the accessed Java objects (field/array accesses,

monitor acquisitions, etc)

Profiling

16
[1] Basso et al., “Optimization-Aware Compiler-Level Event Profiling”. TOPLAS, 2023.

Evaluation

17

➢ Performance evaluation of our implementation

● On the “Are We Fast Yet?” (AWFY) benchmark suite [1]

○ To evaluate the improvements on the FaaS model

● On popular microservice frameworks: micronaut [2], quarkus [3], spring [4]

○ To evaluate the improvements on the serveless model when employing

long-running processes

[1] Marr et al., “Crosslanguage Compiler Benchmarking: Are We Fast Yet?”. DLS’16.

[2] https:// micronaut.io/

[3] https://quarkus.io/

[4] https://spring.io/

http://micronaut.io/
https://quarkus.io/
https://spring.io/

Evaluation - Performance (1)

18

➢ Ordering strategies are effective

➢ Code ordering strategies lead to speedups up to 1.59×

● On average, 1.26× (AWFY) and 1.48× (microservices)

➢ Heap ordering strategies lead to speedups up to 1.20×

● On average, 1.11× (AWFY and microservices)

➢ Combined average speedup of 1.59× (AWFY) and 1.61×

(microservices)

Evaluation - Performance (2)

19

➢ Code and heap orderings are synergistic

● Code ordering affects the content of data structures

storing metadata

● We are investigating memory accesses causing

blocking I/O

➢ We proposed a profile-guided methodology to improve the startup time of Native

Image binaries by reordering the code and the heap-snapshot sections of the binary,

reducing I/O traffic

➢ We described two code-ordering strategies and three heap-ordering strategies

● Divergences in inlining decisions between builds of the same program

● Matching objects from a profile against the objects in the profile-guided build

➢ We implemented our methodology and ordering strategies in GraalVM Native Image

➢ We evaluated our implementation on the “Are We Fast Yet?” benchmark suite and

on widely-used microservice frameworks

● Effective in reducing page faults and improving runtime performance

Conclusions

20

➢ Artifact

● DOI: https://doi.org/10.5281/zenodo.13302630

● Docker image: https://doi.org/10.5281/zenodo.13302630

➢ Contacts:

Matteo Basso

matteo.basso@usi.ch

21

Thanks for your attention

https://doi.org/10.5281/zenodo.13302630
https://doi.org/10.5281/zenodo.13302630

