
AkkaProf
a Profiler for Akka Actors in Parallel and 

Distributed Applications

APLAS 2016

November 21st, 2016

Hanoi, Vietnam

*Università della Svizzera italiana (USI), Faculty of Informatics, Lugano, Switzerland

ˆIBM Research Lab Zurich, Rüschlikon, Switzerland

Andrea Rosà*, Lydia Y. Chenˆ, and Walter Binder*



AkkaProf

• A profiler for Akka actors

• Based on bytecode instrumentation

• Platform-independent profiling

• Centered on: 

• actor utilization

• communication between actors

2



• Atomic concurrent entities

• Cannot share state

• Can communicate only via 

asynchronous messages

• Execute computations in response 

to a message

• Message type dictates executed 

computation

Actors

3



Actors in practice

4

• Existing general-purpose profilers cannot recognize actors

• Existing actor profilers do not measure computations

• Many implementations for Java, C++, Python, .NET, 

Haskell, …

• On the JVM: Akka is the most used one



Metrics

• Executed computations

• Initialization cost

5

• Messages sent

• Messages received

• Utilization

• Communication

Bytecode count

• All metrics are platform-independent



Architecture

• Relies on the DiSL bytecode instrumentation framework [1]

• Guarantees full bytecode coverage

6

[1] L. Marek et al., DiSL: A Domain-specific Language for Bytecode Instrumentation. AOSD’12



Demo: pingpong

7

PingActor PongActor

1. Start

2. Ping

3. Pong

8. Stop

[!]
[!]

[?]

[!]

9. ”OK STOP” [String][!]

5. Pong[!]

7. Pong[!]

4. Ping[!]
6. Ping[!]

! tell

? ask



Evaluation

• Use cases:

1. Savina benchmark suite

• Goal: analyze actor utilization

2. Signal/Collect framework 

• Goal: analyze load balancing

3. Spark and Flink frameworks

• Goal: analyze communication

8



Use case: Spark/Flink

• Apache Spark [2] and Apache Flink [3]

• Computing frameworks for big-data, machine learning, 

graphs, streaming, etc. 

• Master/slave architecture

• Actors handle communication between master and 

workers

• Goal:

• Compare communication between workers

9

[2] M. Zaharia et al., Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. 

NSDI’12

[3] Apache Flink. https://flink.apache.org. 



Use case: Spark/Flink

• Great difference between Spark and Flink:

• Worker: ~1.6k (Spark), ~25k (Flink)

• Master: ~4.1 k (Spark), ~110k (Flink)

• Kmeans run faster in Spark (up to 7x faster)
10

Kmeans on 10M points



Discussion

• Limitation of bytecode count:

• Cannot track code without bytecode representation (e.g., 

native methods)

• Cannot track VM activities (e.g., garbage collection)

• Bytecodes of different complexity are represented with 

the same unit

• Susceptible to dynamic optimizations

11



Discussion

12

• Future work:

• Machine instruction count

• Platform-specific

• Perturbed by instrumentation 

(unlike bytecode count)

• Network traffic

• Platform-specific

• Message flow between actors



Thank you for the attention

• AkkaProf demo: http://www.inf.usi.ch/phd/rosaa/ws/AkkaProf.html

• DiSL: https://disl.ow2.org

• Contact details: 

Andrea Rosà
andrea.rosa@usi.ch
http://www.inf.usi.ch/phd/rosaa

13

http://www.inf.usi.ch/phd/rosaa/ws/AkkaProf.html
https://disl.ow2.org/
mailto:andrea.rosa@usi.ch
http://www.inf.usi.ch/phd/rosaa

