
Automatically Assessing and Extending 
Code Coverage for NPM Packages

Haiyang Sun1, Andrea Rosà1, Daniele Bonetta2, Walter Binder1

1 Università della Svizzera italiana (USI)
2 Oracle Labs



Agenda

● Background

● Motivation and Challenges

● TESA

● Evaluation

2



3

● An open-source, cross-platform, back-end JavaScript runtime environment

● Enables both browser and server applications to be written in JavaScript



4



5

modulecounts.com

Node Package Manager (NPM)

Number of packages available in the past years

http://www.modulecounts.com/


6

medium.com - graph-commons

Node Package Manager (NPM)

Dependencies between packages

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d


7

● Convenience and productivity for developers

● Applications vulnerable to package flaws

○ The event-stream incident stealing bitcoins (Sept. 2018)

■ 8 millions downloads in 3 months https://blog.npmjs.org

Node Package Manager (NPM)

http://post/180565383195/details-about-the-event-stream-incident


8

● Existing study [1]

○ Assessing code coverage of NPM packages is non-trivial

○ Many projects have no tests or tests with low code coverage

● Limitations

○ No automation - requires manual testing and coverage measurement

○ No proposal to extend coverage

[1] A. M. Fard and A. Mesbah, "JavaScript: The (Un)Covered Parts," ICST 2017.

Motivation



● Automate testing and code coverage measurement

● Identify tests from multiple sources:

○ Original tests from the NPM registry and the package's dev repository

○ Dependent tests from dependent packages

● Assemble test suites based on the code coverage

● An algorithm to compact the suite size

● Integrates with dynamic program analysis (DPA) tools

TESA: TESt Automation for NPM

9



Limitation of Basic Testing

10

#!/bin/bash

$ npm install
$ npm test
$ exitcode=$?

● Not enough

○ Empty / no tests

○ Failed tests due to misconfiguration



Limitation of Code Coverage Measurement

11

#!/bin/bash

$ npm install
$ nyc npm test

● Conflicting testing harness and linting tools

● Sensitive to package versions

● Cover only executed code by default



Test Automation with TESA

● Increase testing successful rate

○ Fix misconfigurations

● Extend usability of nyc

○ Patching conflicting testing harnesses

○ Disabling linting and other conflicting tools

● Accurate coverage results

○ Use checksum to verify code versions

○ Scan all available source code files

12



Test Automation with TESA

13

Crawling
- NPM (exact release)
- Github (exact release / closest 

commit)

Pre-process
- Fix common misconfigurations
- Fix conflicts for coverage 

measurement
- Patch against different versions

Coverage measurement
- Customized nyc settings

Result processing
- Identify successful tests
- Stored as JSON files

n@v
(Package n of version v)

● Increase testing successful rate

○ Fix misconfigurations

● Extend usability of nyc

○ Patching conflicting testing harnesses

○ Disabling linting and other conflicting tools

● Accurate coverage results

○ Use checksum to verify code versions

○ Scan all available source code files



Multiple Sources of Tests

1414

● Original tests

○ Apply the testing workflow on n@v (the target package)

● Dependent tests

○ Get all dependent packages that depend on n@v

○ Apply the testing workflow for each dependant package

■ Special configuration of nyc

■ Prioritizes the ones with higher daily downloads



Multiple Sources of Tests

1515

● What to do if the test suite takes too long to finish?

● Compaction algorithm

○ Minimize time needed to execute the test suite

○ Maximize the code coverage

○ One-time cost



Integration with Dynamic Program Analysis

● TESA is integrated with NodeProf [1]

○ Easily port existing DPA tools which NodeProf supports and run them with 

the test suite found by TESA

○ DPA tools are more effective with better code coverage

16

[1] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Efficient Dynamic Analysis for 
Node.js. CC 2018.



Evaluation

● Target packages: 500 popular NPM packages

○ Ranked by daily downloads

○ With at least 20 dependent packages

○ 20K+ packages tested as dependent packages

17



Cumulative Distribution of Coverage for Original Tests

18



Overall Code Coverage

19



Test Suite Compaction

20

● Compaction rate for 500 packages

○ Average time needed to finish reduces from 130 seconds 

to 22 seconds

○ Saved 80% time



DPA Tools from JITProf [1]

21

● DPA-1: non-contiguous array accesses

○ 2.5x more findings (from 8 to 20) with dependent tests

● DPA-2: typed arrays

○ 2.1x more findings (from 97 to 201) with dependent tests

[1] Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-unfriendly 
Javascript code. ESEC/FSE 2015.



Summary

22

TESA

● Test automation and coverage measurement

○ More scalable

● Original + dependent tests

○ More coverage

● DPA integration

○ More effective DPA tools



Q & A

23


