
Università della Svizzera italiana, Switzerland

Matteo Basso, Andrea Rosà, Luca Omini, Walter Binder

Java Vector API: Benchmarking and
Performance Analysis

CC 2023
February 25, 2023

Introduction

2

➢ Java Vector API

● Included in the Java Class Library since Java 16

● Explicit vector (SIMD) operations using an object-oriented Java API

➢ High performance

● Runtime compilation of vector operations to hardware vector instructions

➢ Portability

● Explicit vectorization without renouncing the advantages of Java as a high-level

programming language

Introduction

3

➢ Novel incubating API

➢ There is no study evaluating the performance of the Java Vector API

➢ There is no realistic benchmark that uses the Java Vector API

➢ Existing work

● Explores the possibility of using the Java Vector API

● Describes the Java Vector API without performing a detailed evaluation [1]

[1] M. Anton Ertl, "Software Vector Chaining." ManLang 2018.

Contributions

4

➢ We design and develop JVBench [1], the first open-source benchmark suite

extensively exercising the Java Vector API

● Realistic workloads resulting in high API coverage

➢ We use JVBench to evaluate the performance of the Java Vector API w.r.t. other

semantically equivalent implementations

● Scalar implementation

● Auto-vectorized implementation

➢ We identify four patterns and anti-patterns on the use of the Java Vector API

significantly affecting application performance

[1] https://github.com/usi-dag/JVBench

https://github.com/usi-dag/JVBench

Background - Java Vector API

5

➢ Functional but not optimal Java implementation

● Executed before that Just-In-Time (JIT) compilation occurs

● Executed when the underlying platform does not support some of the

requested vector features

➢ At runtime, the JIT compiler emits machine code that uses the supported vector

registers and vector instructions

● Removing the abstraction of the object-oriented API

➢ Execution of applications exercising the Java Vector API even on platforms that do

not support some vector operations

JVBench - Benchmarks

6[1] C. Ramírez et al., "A RISC-V Simulator and Benchmark Suite for Designing and Evaluating Vector Architectures." TACO 2020.

➢ Evaluate the performance of the Java Vector API on diversified benchmarks

➢ Benchmarks well-established in the literature [1]

JVBench - API Coverage

7

➢ Classification of the vector operations as reported by related work [1]

➢ High API Coverage

[1] Intel Corporation, “Java Vector API”. https://cr.openjdk.java.net/~vlivanov/talks/2018_JVMLS_VectorAPI.pdf

https://cr.openjdk.java.net/~vlivanov/talks/2018_JVMLS_VectorAPI.pdf

Java Vector API Evaluation

8

➢ Evaluation of the performance of the Java Vector API w.r.t. other semantically

equivalent implementations

➢ We conduct our experiments using OpenJDK 19 and the HotSpot C2 JIT compiler

➢ We run our experiments on three different machines:

● M
AVX

: sse* and avx Intel-defined CPU flags (VectorShape of length 128 bits)

● M
AVX2

: sse*, avx, fma, and avx2 Intel-defined CPU flags (VectorShape of length

256 bits)

● M
AVX512

: sse*, avx, fma, avx2, and avx512 Intel-defined CPU flags

(VectorShape of length 512 bits)

Java Vector API Evaluation

9

➢ We evaluate four different versions of each JVBench benchmark

● scalar (baseline): no vectorization, no auto-vectorization

● auto-vectorized: auto-vectorization

● vector-api: Java Vector API, no auto-vectorization

● fully-vectorized: Java Vector API, auto-vectorization

➢ We collect 10 steady-state measurements for each benchmark

Java Vector API Evaluation

10

➢ Auto-vectorization offers only poor

performance improvements

➢ axpy is the only effectively

auto-vectorized benchmark

M
AVX512

Java Vector API Evaluation

11

➢ The Java Vector API is instead

effective

● Speedup factors up to 11.99×

● On M
AVX512

, 2.98× on average

(geomean)

M
AVX512

Java Vector API Evaluation

12

➢ No significant difference between

the vector-api and the

fully-vectorized versions

➢ The compiler auto-vectorization

does not interfere with the Java

Vector API

M
AVX512

Java Vector API Evaluation

13

➢ Poor performance on M
AVX

 for

benchmarks canneal, swaptions,

and particlefilter

● Usage of masked operations

● Execution of the Java

implementation of the Vector

API

M
AVX

Java Vector API Evaluation - Summary

14

➢ Auto-vectorization offers only poor performance improvements

➢ The Java Vector API yields speedup factors up to 11.99×

➢ On old machines, the Java Vector API introduces a slowdown w.r.t. an equivalent

scalar implementation

Patterns and Anti-Patterns

15

➢ Performant API usages and semantically equivalent less performant API usages,

respectively

➢ We analyze four different patterns/anti-patterns:

● loopBound and indexInRange

● Transcendental and Trigonometric Lane-Wise Operations

● Xor Operation

● Fused Multiply-Add (FMA) Operation

Patterns and Anti-Patterns - indexInRange

16

static final VectorSpecies<Integer> SPECIES =

 IntVector.SPECIES_MAX;

void vectorAdd(int[] a, int[] b, int[] c) {

 int i = 0;

 int limit = SPECIES.loopBound(a.length);

 for (; i < limit; i += SPECIES.length()) {

 IntVector vA = IntVector.fromArray(SPECIES, a, i);

 IntVector vB = IntVector.fromArray(SPECIES, b, i);

 vA.add(vB).intoArray(c, i);

 }

 for (; i < a.length; i++) {

 c[i] = a[i] + b[i];

 }

}

static final VectorSpecies<Integer> SPECIES =

 IntVector.SPECIES_MAX;

static void vectorAdd(int[] a, int[] b, int[] c) {

 for (

 int i = 0;

 i < a.length;

 i += SPECIES.length()

) {

 VectorMask<Integer> mask =

 SPECIES.indexInRange(i, a.length);

 IntVector vA =

 IntVector.fromArray(SPECIES, a, i, mask);

 IntVector vB =

 IntVector.fromArray(SPECIES, b, i, mask);

 vA.add(vB).intoArray(c, i, mask);

 }

}

loopBound indexInRange

Patterns and Anti-Patterns - indexInRange

17

➢ The loopBound method achieves better performance

➢ Performance degradation when using masked operation on architectures that do not

support them

M
AVX512 M

AVX

Patterns and Anti-Patterns - indexInRange

18

➢ Usage of loopBound to implement portable code that does not lead to performance

degradation

● Development of third-party Java libraries

M
AVX512 M

AVX

➢ Our analysis focuses on an incubating API of the JDK

● JVBench may help the developers of the Java Vector API improve the

implementation before the final release

● JVBench may help compiler developers improving auto-vectorization

➢ JVBench includes benchmarks using a wide spectrum of vector types, masks, and API

methods

● JVBench does not exercise all the features defined in the specification of the

Java Vector API

● Expand the API Coverage as part of our future work

Discussion

19

➢ We presented JVBench, the first open-source benchmark suite for the Java Vector

API

➢ We used JVBench to evaluate the performance of the Java Vector API

● The explicit vectorization enabled by the API greatly improves performance

w.r.t. auto-vectorization and scalar code

➢ We reported four patterns and anti-patterns that significantly influence runtime

performance

Conclusions

20

➢ JVBench repository: https://github.com/usi-dag/JVBench

➢ JVBench artifact

● Docker image: https://zenodo.org/record/7499096

● Source code: https://github.com/usi-dag/JVBench-artifact

➢ Contacts:

Matteo Basso

matteo.basso@usi.ch

21

Thanks for your attention

https://github.com/usi-dag/JVBench
https://zenodo.org/record/7499096
https://github.com/usi-dag/JVBench-artifact

