Java Vector APIl: Benchmarking and
Performance Analysis

Matteo Basso, Andrea Rosa, Luca Omini, Walter Binder

Universita della Svizzera italiana, Switzerland

Universita
della
Svizzera
italiana

CC 2023
February 25, 2023

Introduction

> Java Vector API
® Included in the Java Class Library since Java 16
® Explicit vector (SIMD) operations using an object-oriented Java API
> High performance
® Runtime compilation of vector operations to hardware vector instructions
> Portability
® Explicit vectorization without renouncing the advantages of Java as a high-level

programming language

Introduction

Novel incubating API
There is no study evaluating the performance of the Java Vector API

There is no realistic benchmark that uses the Java Vector API

Y V VY

Existing work
® Explores the possibility of using the Java Vector API

® Describes the Java Vector APl without performing a detailed evaluation [1]

[1] M. Anton Ertl, "Software Vector Chaining." ManlLang 2018.

Contributions

> We design and develop JVBench [1], the first open-source benchmark suite
extensively exercising the Java Vector API
® Realistic workloads resulting in high APl coverage
> We use JVBench to evaluate the performance of the Java Vector API w.r.t. other
semantically equivalent implementations
® Scalar implementation
® Auto-vectorized implementation
> We identify four patterns and anti-patterns on the use of the Java Vector API

significantly affecting application performance

[1] https://github.com/usi-dag/JVBench 4

https://github.com/usi-dag/JVBench

Background - Java Vector API

Functional but not optimal Java implementation
® Executed before that Just-In-Time (JIT) compilation occurs
e Executed when the underlying platform does not support some of the
requested vector features
At runtime, the JIT compiler emits machine code that uses the supported vector
registers and vector instructions
® Removing the abstraction of the object-oriented API
Execution of applications exercising the Java Vector APl even on platforms that do

not support some vector operations

JVBench - Benchmarks

Benchmark Name Application Domain Algorithmic Model
axpy High Performance Computing BLAS

blackscholes Financial Analysis Dense Linear Algebra
canneal Engineering Unstructured Grids
jacobi2d Engineering Dense Linear Algebra
lavaMD Molecular Dynamics N-Body

particlefilter Medical Imaging Structured Grids
pathfinder Grid Traversal Dynamic Programming
somier Physics Simulation Dense Linear Algebra
streamcluster Data Mining Dense Linear Algebra
swaptions Financial Analysis MapReduce Regular

> Evaluate the performance of the Java Vector API on diversified benchmarks
> Benchmarks well-established in the literature [1]

[1] C. Ramirez et al., "A RISC-V Simulator and Benchmark Suite for Designing and Evaluating Vector Architectures." TACO 2020. 6

JVBench - APl Coverage

Benchmark axpy Dblackscholes canneal jacobi2d lavaMD particlefilter pathfinder somier streamcluster swaptions
Vector DoubleVector va v v v v
T FloatVector v v v
ype IntVector v v v
VectorMask v v v v
Vector Creation v v v v v v Vv v v Vv
Vector Manipulation v
API Unary v v v v v
—— Binary Rz S 7 7 vz e v / NG v
S Comparisons v v v
Tr?nscendenFal and v v v Y v
Trigonometric
Reductions v v v v
> (lassification of the vector operations as reported by related work [1]
> High API Coverage
7

[1] Intel Corporation, “Java Vector API”. https://cr.openjdk.java.net/~vlivanov/talks/2018 JVMLS VectorAPl.pdf

https://cr.openjdk.java.net/~vlivanov/talks/2018_JVMLS_VectorAPI.pdf

4

Java Vector API Evaluation

Evaluation of the performance of the Java Vector APl w.r.t. other semantically
equivalent implementations

We conduct our experiments using OpenJDK 19 and the HotSpot C2 JIT compiler
We run our experiments on three different machines:

® M, :sse*and avxIntel-defined CPU flags (VectorShape of length 128 bits)

® M,,,:sse* avx, fma, and avx2 Intel-defined CPU flags (VectorShape of length
256 bits)
o M : sse*, avx, fma, avx2, and avx512 Intel-defined CPU flags

AVX512°
(VectorShape of length 512 bits)

Java Vector API Evaluation

> We evaluate four different versions of each JVBench benchmark
e scalar (baseline): no vectorization, no auto-vectorization
e auto-vectorized: auto-vectorization
e vector-api: Java Vector API, no auto-vectorization
e fully-vectorized: Java Vector API, auto-vectorization

> We collect 10 steady-state measurements for each benchmark

Speedup factor

Java Vector API Evaluation

1000

100

= autovectorized 5 Ayto-vectorization offers only poor
EEE vector-api

PoYte) 88_ B fully-vectorized]
i performance |mprovements

> axpy is the only effectively

auto-vectorized benchmark

AVX512

10

Speedup factor

Java Vector API Evaluation

1000

100

DO
0

AVX512

== autovectorized x> The Java Vector APl is instead
Il vector-api

s fully-vectorized .
Y effective

® Speedup factors up to 11.99x

e OnM 2.98x on average

AVX512’

(geomean)

11

Speedup factor

Java Vector API Evaluation

1000

100

DO
0

AVX512

Bl auto-vectorized
Bl vector-api
mm fully-vectorized

No significant difference between
the vector-api and the
fully-vectorized versions

The compiler auto-vectorization
does not interfere with the Java

Vector API

12

Speedup factor

Java Vector API Evaluation

1000

100}

B auto-vectorized
B vector-api
B fully-vectorized

> Poor performance on M, for
benchmarks canneal, swaptions,
and particlefilter
e Usage of masked operations
e Execution of the Java

implementation of the Vector

API

13

Java Vector API Evaluation - Summary

Auto-vectorization offers only poor performance improvements

The Java Vector APl yields speedup factors up to 11.99x

Vv VYV

On old machines, the Java Vector APl introduces a slowdown w.r.t. an equivalent

scalar implementation

14

Patterns and Anti-Patterns

> Performant APl usages and semantically equivalent less performant API usages,
respectively

> We analyze four different patterns/anti-patterns:

e loopBound and indexInRange

® Transcendental and Trigonometric Lane-Wise Operations
e Xor Operation

e Fused Multiply-Add (FMA) Operation

15

Patterns and Anti-Patterns - indexInRange

loopBound indexInRange
static final VectorSpecies<Integer> SPECIES = static final VectorSpecies<Integer> SPECIES =
IntVector.SPECIES_MAX; IntVector.SPECIES_MAX;
void vectorAdd(int[] a, int[] b, int[] c) { static void vectorAdd(int[] a, int[] b, int[] c) {
int i = 9; for (
int 1imit = SPECIES.loopBound(a.length); int i = 9;
i < a.length;
for (; i1 < limit; i += SPECIES.length()) { i += SPECIES.length()
IntVector vA = IntVector.fromArray(SPECIES, a, i);) A
IntVector vB = IntVector.fromArray(SPECIES, b, i); VectorMask<Integer> mask =
vA.add(vB).intoArray(c, 1i); SPECIES.indexInRange(i, a.length);
} IntVector vA =
IntVector.fromArray(SPECIES, a, i,| mask);
for (; i < a.length; i++) { IntVector vB =
cli] = a[i] + b[i]: IntVector.fromArray(SPECIES, b, i,| mask);
} vA.add(vB).intoArray(c, 1i,| mask);
} }

Patterns and Anti-Patterns - indexInRange

1004 © B |oopBound 100 ; BN |oopBound
© o O m B indexIinRange B indexInRange
S e als m = 5
(=) I o))
o 107 = o @ i, ® N =
© i e ™ 0. & ©
Y— N ? ~ G
e Q
=]
v]
v]
Q Q
v 0.1)

N @ o2 a0 © «& & el & &
0% (¢ T M (o @ g
[ONIBT\NG O & o & Q
‘0\0 > Q ,de
M
AVX512 M ,ux

\

The 1loopBound method achieves better performance
> Performance degradation when using masked operation on architectures that do not

support them .

Patterns and Anti-Patterns - indexInRange

1004 © B |oopBound 100 ; BN |oopBound

© o O m B indexIinRange B indexInRange

S e als m = 5
o o

o 107 = o] i, © N =

© i e ™ 0. & ©

Y— N ? ~ G

Q Q

=} 1 =]

o o

v]

v]

Q Q

v 0.1)

N e .0 S PSS SIS SIS S
0% (¢ T M (o @ g
& AT (T OV OV Q0
(y"e C \3 N (0 ’0" 3((\ S
‘0\0 o) Q 6,66
M
AVX512 M, ux

> Usage of 1loopBound to implement portable code that does not lead to performance

degradation

e Development of third-party Java libraries y

Discussion

> QOur analysis focuses on an incubating API of the JDK
e JVBench may help the developers of the Java Vector APl improve the
implementation before the final release
e JVBench may help compiler developers improving auto-vectorization
> JVBench includes benchmarks using a wide spectrum of vector types, masks, and API
methods
e JVBench does not exercise all the features defined in the specification of the
Java Vector API

e Expand the API Coverage as part of our future work

19

Conclusions

We presented JVBench, the first open-source benchmark suite for the Java Vector
API
We used JVBench to evaluate the performance of the Java Vector API
® The explicit vectorization enabled by the API greatly improves performance
w.r.t. auto-vectorization and scalar code
We reported four patterns and anti-patterns that significantly influence runtime

performance

20

\

Thanks for your attention

JVBench repository: https://github.com/usi-dag/JVBench

JVBench artifact

e Docker image: https://zenodo.org/record/7499096

® Source code: https://github.com/usi-dag/J\VBench-artifact

Contacts:
Matteo Basso

matteo.basso@usi.ch

o

21

https://github.com/usi-dag/JVBench
https://zenodo.org/record/7499096
https://github.com/usi-dag/JVBench-artifact

