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Big-Data Systems

I Big-data is becoming a key requirement for many applications

I Used for large-scale simulations, scientific computations, web indexing,
sensor networks, ...

I Workload greatly diversified
I High degree of heterogeneity and dynamicity

I Systems have large scale and are very complex
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Problem Statement

I A lot of job failures!

I Potentially turn into critical performance impediments

I Resource waste
I Job slowdown

I It is essential to predict job outcomes and mitigate resource waste
due to job failures.
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Motivations
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Field data: Google cluster trace [1]

I A lot of wasted resources

I Used for a lot of time

I May block the execution of other jobs

[1] J. Wilkes, More Google cluster data, Google research blog. Nov 2011.
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Challenges

I Intricate dependencies among jobs and on the underlying hardware

I Jobs composed of a lot of tasks with different requirements

I Jobs exhibit strong time-variability
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Contibutions

I Development of on-line prediction model for job outcomes
I Using machine learning techniques
I Employing on-line training based on historical data
I Based on information about past jobs and system load
I Prediction upon job arrival

I Proposal of delay-based mitigation policy
I Terminates failed jobs after a grace period
I Idea: misclassified jobs still have chance to complete successfully

I Goal: minimize resource waste and harmful terminations
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Data Description

I Google cluster trace [1]

I 29 days of workload
I Jobs contain multiple tasks
I Final types: finish, eviction, fail, kill
I Two classes considered: successful, failed
I Task attributes:

I Specify by users at arrival time
I Requested resources (CPU, RAM, DISK)
I Priority ∈ [0, 11]

I Job attributes: AVG/STD of task attributes

[1] J. Wilkes, More Google cluster data, Google research blog. Nov 2011.
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Metrics of interests

I Prediction model

I False negative rate: FN = # successful jobs classified as failed
# jobs

I Misclassification rate: MR = #misclassified jobs
# jobs

I Mitigation policy

I Mitigated false negative rate:
MFN = # successful jobs terminated by policy

# jobs

I Reduction of resource waste:
RRW = 1 − resources consumed applying policy

resources consumed not applying policy

I Job resource consumption =
# tasks · AVG task requested resources · job execution time
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Methodology
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I Prediction model
I Classification model

I Known from machine learning theory

I New model built every day

I Uses attributes of past jobs in a sliding learning window
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I Mitigation policy

I Only on predicted to fail jobs
I Grace period length
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Methodology
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I Several prediction models and mitigation policies

I Derive the optimal ones
I Optimal prediction model: low MR
I Optimal mitigation policy: low MFN

I Training set vs testing set
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Feature Sets

I Two feature sets assigned to each job:

I Static features: static information about jobs
I System features: related to system load at job arrival time

I Static features:

I Job requested CPU, RAM, DISK
I Job priority
I Number of tasks
I Total: 9 static features
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System Features (1)

I Idea: job outcome also depends on system load

I System load indicators:

I (Sampling window = 5 minutes)
I Arrival rate
I Throughput rate
I Number of tasks

I Assigned to each job at arrival time
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System Features (2)
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System Features (3)

I Priority matters!
I Consider 3 different values for each system load indicator:

I Same priority
I Lower priorities
I Higher priorities

I Consider instantaneous fluctuations of system state

I Difference between most two recent sampling windows

I Total: 36 system features

14/22



Classification Models

I Four classification models:

I Linear Discriminant Analysis (LDA)
I Linear Discriminant Analysis on expanded basis (ELDA)

I Expanded feature sets: original, product, squared value
I Total: 54 static features, 702 system features

I Quadratic Discriminant Analysis (QDA)
I Logistic Regression (LR)
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Evaluation - Prediction Model
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Evaluation - Prediction Model
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I Optimal prediction model:

I Uses both static and system features
I Uses a long learning window (10 days)
I Uses ELDA
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Evaluation - Mitigation Policy (1)
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Evaluation - Mitigation Policy (2)
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I Optimal mitigation policy:

I Keep MFN ≤ 1%
I Grace period = 20 minutes
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Evaluation - Testing Set
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I AVG MFN = 1.05%
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Evaluation - Testing Set
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I AVG RRW = 47% (CPU), 47% (RAM), 41% (DISK), 33% (time)
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Conclusion

I We developed an on-line prediction model for job outcomes
I Classification model: ELDA
I Learning window: 10 days

I We developed a delay-based mitigation policy
I Grace period: 20 minutes

I Good balance between resource conservation and harmful job
terminations

I Future work:

I Further improve classification accuracy
I Extend prediction to tasks
I Extend prediction classes (finish/eviction/fail/kill)
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