Predicting and Mitigating Job Failures in Big Data Clusters

<u>Andrea Rosà</u>*, Lydia Y. Chen[†], Walter Binder*

 * Università della Svizzera italiana, Faculty of Informatics, Switzerland † IBM Research Zurich Lab, Cloud Server Technologies Group, Switzerland

IEEE/ACM CCGrid 2015

May 6, 2015

This work has been supported by the Swiss National Science Foundation (project 200021_141002) and EU commission under FP7 GENiC project (608826).

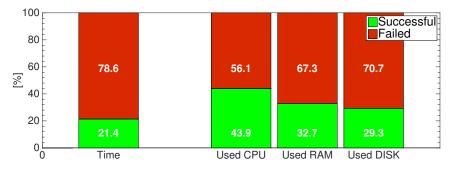
Big-Data Systems

- Big-data is becoming a key requirement for many applications
 - Used for large-scale simulations, scientific computations, web indexing, sensor networks, ...
- Workload greatly diversified
 - ▶ High degree of heterogeneity and dynamicity
- Systems have large scale and are very complex

Problem Statement

- A lot of job failures!
- Potentially turn into critical performance impediments
 - Resource waste
 - Job slowdown
- It is essential to predict job outcomes and mitigate resource waste due to job failures.

Motivations



Field data: Google cluster trace [1]

- A lot of wasted resources
- Used for a lot of time
- May block the execution of other jobs

[1] J. Wilkes, More Google cluster data, Google research blog. Nov 2011.

Challenges

- ▶ Intricate **dependencies** among jobs and on the underlying hardware
- ▶ Jobs composed of a lot of tasks with different requirements
- Jobs exhibit strong time-variability

Contibutions

Development of on-line prediction model for job outcomes

- Using machine learning techniques
- Employing on-line training based on historical data
- Based on information about past jobs and system load
- Prediction upon job arrival

Proposal of delay-based mitigation policy

- Terminates failed jobs after a grace period
- Idea: misclassified jobs still have chance to complete successfully

► Goal: minimize resource waste and harmful terminations

Data Description

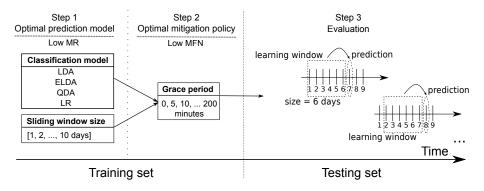
- ▶ Google cluster trace [1]
 - 29 days of workload
 - ▶ Jobs contain multiple tasks
 - Final types: finish, eviction, fail, kill
 - Two classes considered: successful, failed
 - Task attributes:
 - Specify by users at arrival time
 - Requested resources (CPU, RAM, DISK)
 - ▶ Priority \in [0, 11]
 - ▶ Job attributes: AVG/STD of task attributes

[1] J. Wilkes, More Google cluster data, Google research blog. Nov 2011.

Metrics of interests

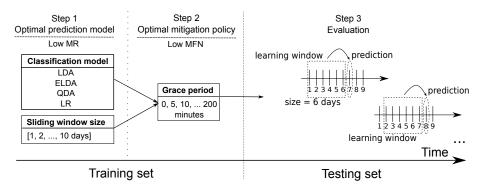
- Prediction model
 - ► False negative rate: $FN = \frac{\# \text{ successful jobs classified as failed}}{\# \text{ jobs}}$
 - ► Misclassification rate: $MR = \frac{\#\text{misclassified jobs}}{\#\text{ jobs}}$
- Mitigation policy
 - Mitigated false negative rate: MFN = # successful jobs terminated by policy # jobs
 - Reduction of resource waste: RRW = 1 - resources consumed applying policy resources consumed not applying policy
 - Job resource consumption =
 # tasks · AVG task requested resources · job execution time

Methodology



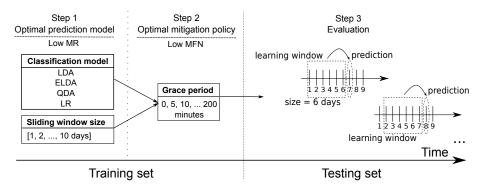
- Prediction model
 - Classification model
 - ▶ Known from machine learning theory
 - New model built every day
 - Uses attributes of past jobs in a sliding learning window

Methodology



- Mitigation policy
 - Only on predicted to fail jobs
 - Grace period length

Methodology



- Several prediction models and mitigation policies
- Derive the optimal ones
 - Optimal prediction model: low MR
 - Optimal mitigation policy: low MFN
- Training set vs testing set

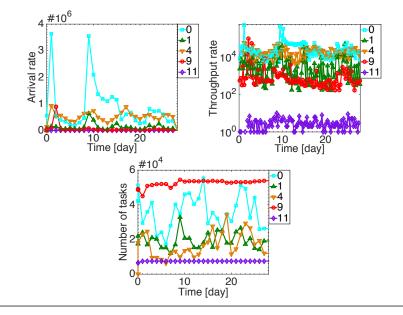
Feature Sets

- ▶ Two feature sets assigned to each job:
 - ▶ **Static** features: static information about jobs
 - **System** features: related to system load at job arrival time
- Static features:
 - Job requested CPU, RAM, DISK
 - Job priority
 - Number of tasks
 - ▶ Total: 9 static features

System Features (1)

- ▶ Idea: job outcome also depends on system load
- System load indicators:
 - ▶ (Sampling window = 5 minutes)
 - Arrival rate
 - Throughput rate
 - Number of tasks
- Assigned to each job at arrival time

System Features (2)



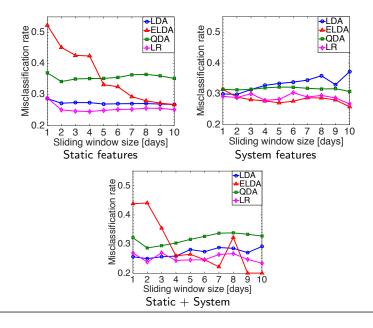
System Features (3)

- Priority matters!
 - ▶ Consider 3 different values for each system load indicator:
 - ► Same priority
 - Lower priorities
 - Higher priorities
- Consider instantaneous fluctuations of system state
 - Difference between most two recent sampling windows
- ▶ Total: 36 system features

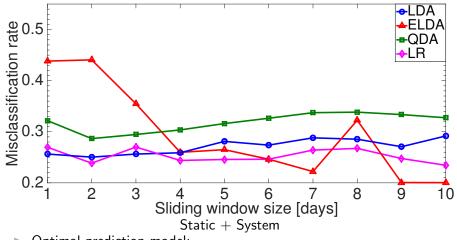
Classification Models

- ► Four classification models:
 - Linear Discriminant Analysis (LDA)
 - ▶ Linear Discriminant Analysis on expanded basis (ELDA)
 - Expanded feature sets: original, product, squared value
 - Total: 54 static features, 702 system features
 - Quadratic Discriminant Analysis (QDA)
 - Logistic Regression (LR)

Evaluation - Prediction Model

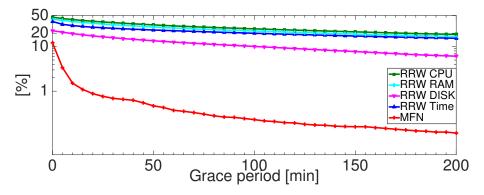


Evaluation - Prediction Model

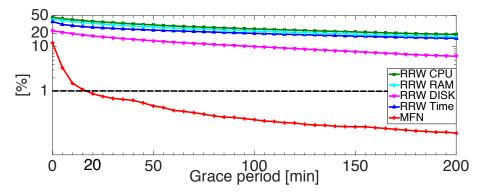


- Optimal prediction model:
 - Uses both static and system features
 - Uses a long learning window (10 days)
 - Uses ELDA

```
Evaluation - Mitigation Policy (1)
```

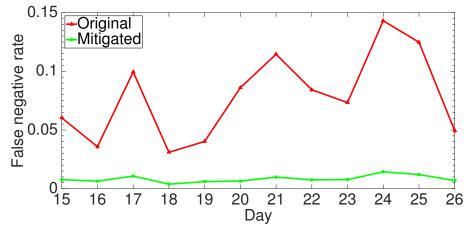


```
Evaluation - Mitigation Policy (2)
```



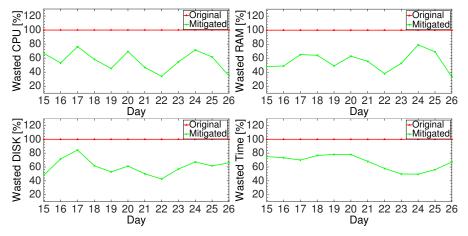
- Optimal mitigation policy:
 - ▶ Keep $MFN \le 1\%$
 - Grace period = 20 minutes

Evaluation - Testing Set



▶ AVG *MFN* = 1.05%

Evaluation - Testing Set



▶ AVG *RRW* = 47% (CPU), 47% (RAM), 41% (DISK), 33% (time)

Conclusion

- ▶ We developed an on-line prediction model for job outcomes
 - Classification model: ELDA
 - ▶ Learning window: 10 days
- ▶ We developed a **delay-based mitigation policy**
 - ▶ Grace period: 20 minutes
- Good balance between resource conservation and harmful job terminations
- ► Future work:
 - ▶ Further improve classification accuracy
 - Extend prediction to tasks
 - Extend prediction classes (finish/eviction/fail/kill)

Conclusion

- ▶ We developed an on-line prediction model for job outcomes
 - Classification model: ELDA
 - Learning window: 10 days
- ▶ We developed a delay-based mitigation policy
 - ▶ Grace period: 20 minutes
- Good balance between resource conservation and harmful job terminations

Andrea Rosà

andrea.rosa@usi.ch

- http://www.inf.usi.ch/phd/rosaa
- Università della Svizzera italiana (USI)
 Faculty of Informatics

