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• The amount of work to be performed by parallel tasks

Task Granularity
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• Inter-thread communication
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Task Granularity
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Coarse-grained tasks
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• Low CPU utilization

• Load imbalance

Missed parallelization opportunities:

• The amount of work to be performed by parallel tasks

work

 

application



• Our scope:

Task Granularity
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Multi-threaded, task-parallel 

applications executing on a 

single JVM

A single shared-memory 

multicore machine

• Task granularity little analyzed in the literature
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• Goal: provide a better understanding of task granularity

Our Work

• Contribution:

• tgp: task-granularity profiler for the JVM

• Task-granularity analysis on DaCapo [1] and ScalaBench [2]

• Task-granularity optimization

• Challenges:

• Recognize every task spawned

• Accurately measure granularity for each task

• Collect metrics with low perturbation

[1] Blackburn et al. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. OOPSLA’06. 

[2] Sewe et al. DaCapo con Scala: Design and Analysis of a Scala Benchmark Suite for the JVM . OOPSLA’11. 
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tgp

• tgp: a Task-Granularity Profiler for multi-threaded, 

task-parallel applications executing on the JVM

• Features:

• Profile accurate metrics on task granularity

• Show the impact of task granularity on 

application and system performance

• Actionable profiles

• Users optimize code portions suggested by tgp
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• Task: every instance of

• java.lang.Runnable

• java.util.concurrent.Callable

• java.util.concurrent.ForkJoinTask

• Work: code executed in the dynamic extent of

• Runnable.run()

• Callable.call()

• ForkJoinTask.exec()

Task Model
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Methodology
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Metric Collection

• Vertical profiler [1]
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[1] Hauswirth et al. Vertical Profiling: Understanding the Behavior of Object-oriented Applications. OOPSLA’04. 



Metric Collection

• Creator/executor thread

• Start/end execution timestamp

• Correlate task execution with OS-level metrics

• Task type
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Metric Collection

• Submissions to task executor frameworks

• Instances of java.util.concurrent.Executor
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Metric Collection

• Garbage collection activities

• Correlate unexpected metric fluctuations with GC
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Metric Collection

• CPU utilization (kernel and user)

• Determine if CPU is well utilized

(especially in the case of coarse-grained tasks)

• Context switches

• Measure contention and synchronization among tasks
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Metric Collection

• Reference cycles

• Task-granularity measure

Represent instruction complexity✓
Account for latencies (e.g., cache misses, misalignments)✓
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Ensure consistent profiling in case of frequency scaling✓



Metric Collection

• DiSL server [1]: performs load-time instrumentation

• DiSL offers full bytecode coverage

• All tasks detected

• Low instrumentation overhead

• Minimized and efficient instrumentation code

• No heap allocations
[1] Marek et al. DiSL: A Domain-specific Language for Bytecode Instrumentation. AOSD’12. 
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Metric Collection

• ShadowVM [1]: executes analysis code in isolation

No shared states between application and analysis VM✓
All thread lifecycle events intercepted (including shutdown)✓
Reduces application slowdown✓
• Contains most of the profiling logic

[1] Marek et al. ShadowVM: Robust and Comprehensive Dynamic Program Analysis for the Java Platform. GPCE‘13. 
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Calling Context Profiling

• Calling contexts: methods open in the call stack

• Optional pass

• Collected on a subset of problematic tasks

• Collected at task creation, submission and execution

• Often need modifications to optimize task granularity

• Provide actionable profiles
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Task Granularity Analysis

• Target: DaCapo and ScalaBench applications

• Input size: largest possible

• Focus only on steady-state [1]

[1] Lengauer et al. A Comprehensive Java Benchmark Study on Memory and Garbage Collection Behavior 

of DaCapo, DaCapo Scala, and SPECjvm2008. ICPE’17. 
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Fine-Grained Tasks

• Large groups of tasks of same type and low granularity

• pmd: 570 tasks

• tmt: 16’184 tasks

• tradesoap: 112’965 tasks
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Fine-Grained Tasks

• Significant contention observed

• pmd / tmt: only when fine-grained tasks are executed
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Fine-Grained Tasks

• pmd / tmt: presence of fine-grained tasks 

significantly interfering with each other
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• Optimization: merge tasks

Reduce contention between tasks✓
Reduce creation and scheduling overheads✓



Coarse-Grained Tasks

• Coarse-grained tasks in 6 benchmarks
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Coarse-Grained Tasks

• Low or moderate CPU utilization

• Missed parallelization opportunities
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Coarse-Grained Tasks

• Low contention in lusearch / sunflow
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Coarse-Grained Tasks

• lusearch / sunflow: presence of optimizable 

coarse-grained tasks
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• Moderate CPU utilization and little interference

• Optimization: split tasks into smaller ones

Better utilize CPU✓



Task Granularity Optimization

• Target benchmarks: pmd and lusearch

• Small modifications to task creation, submission and 

execution

• Guided by actionable profiles
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Optimizing task granularity leads to✓
significant performance improvements



Overhead

• Limited profiling overhead

Low perturbation of the collected metrics✓
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Conclusions

• We presented tgp, a task-granularity profiler for the JVM

• We analyzed task granularity in DaCapo and ScalaBench

• We revealed fine- and coarse-grained tasks causing performance 

drawbacks

• We optimized task granularity in pmd and lusearch

• Speedups up to 1.53x (pmd) and 1.13x (lusearch)
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Thank you for the attention

• Andrea Rosà

andrea.rosa@usi.ch

http://www.inf.usi.ch/phd/rosaa
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