
Analyzing and Optimizing 

Task Granularity on the JVM

CGO 2018

February 26th, 2018

Vienna, Austria

Università della Svizzera italiana (USI), Faculty of Informatics, Lugano, Switzerland

Andrea Rosà, Eduardo Rosales, Walter Binder



• The amount of work to be performed by parallel tasks

Task Granularity

CPU

CORE CORE

CORE CORE

• Inter-thread communication

• Synchronization

• Task scheduling

• Task creation

Fine-grained tasks

Parallelization overheads due to:

task

task task task task task

task task task task

task task task task task

task task task task task

work

application

 

2



Task Granularity

3

CPU

CORE CORE

CORE CORE

Coarse-grained tasks

task

task

task

• Low CPU utilization

• Load imbalance

Missed parallelization opportunities:

• The amount of work to be performed by parallel tasks

work

 

application



• Our scope:

Task Granularity

CPU
CORE CORE

CORE CORE

Memory
CPU

CORE CORE

CORE CORE

CPU
CORE CORE

CORE CORE

CPU
CORE CORE

CORE CORE

Multi-threaded, task-parallel 

applications executing on a 

single JVM

A single shared-memory 

multicore machine

• Task granularity little analyzed in the literature

4



• Goal: provide a better understanding of task granularity

Our Work

• Contribution:

• tgp: task-granularity profiler for the JVM

• Task-granularity analysis on DaCapo [1] and ScalaBench [2]

• Task-granularity optimization

• Challenges:

• Recognize every task spawned

• Accurately measure granularity for each task

• Collect metrics with low perturbation

[1] Blackburn et al. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. OOPSLA’06. 

[2] Sewe et al. DaCapo con Scala: Design and Analysis of a Scala Benchmark Suite for the JVM . OOPSLA’11. 

5



tgp

• tgp: a Task-Granularity Profiler for multi-threaded, 

task-parallel applications executing on the JVM

• Features:

• Profile accurate metrics on task granularity

• Show the impact of task granularity on 

application and system performance

• Actionable profiles

• Users optimize code portions suggested by tgp

6



• Task: every instance of

• java.lang.Runnable

• java.util.concurrent.Callable

• java.util.concurrent.ForkJoinTask

• Work: code executed in the dynamic extent of

• Runnable.run()

• Callable.call()

• ForkJoinTask.exec()

Task Model

7



Methodology

8



Metric Collection

• Vertical profiler [1]

9

[1] Hauswirth et al. Vertical Profiling: Understanding the Behavior of Object-oriented Applications. OOPSLA’04. 



Metric Collection

• Creator/executor thread

• Start/end execution timestamp

• Correlate task execution with OS-level metrics

• Task type

10



Metric Collection

• Submissions to task executor frameworks

• Instances of java.util.concurrent.Executor

11



Metric Collection

• Garbage collection activities

• Correlate unexpected metric fluctuations with GC

12



Metric Collection

• CPU utilization (kernel and user)

• Determine if CPU is well utilized

(especially in the case of coarse-grained tasks)

• Context switches

• Measure contention and synchronization among tasks

13



Metric Collection

• Reference cycles

• Task-granularity measure

Represent instruction complexity✓
Account for latencies (e.g., cache misses, misalignments)✓

14

Ensure consistent profiling in case of frequency scaling✓



Metric Collection

• DiSL server [1]: performs load-time instrumentation

• DiSL offers full bytecode coverage

• All tasks detected

• Low instrumentation overhead

• Minimized and efficient instrumentation code

• No heap allocations
[1] Marek et al. DiSL: A Domain-specific Language for Bytecode Instrumentation. AOSD’12. 

15



Metric Collection

• ShadowVM [1]: executes analysis code in isolation

No shared states between application and analysis VM✓
All thread lifecycle events intercepted (including shutdown)✓
Reduces application slowdown✓
• Contains most of the profiling logic

[1] Marek et al. ShadowVM: Robust and Comprehensive Dynamic Program Analysis for the Java Platform. GPCE‘13. 

16



Calling Context Profiling

• Calling contexts: methods open in the call stack

• Optional pass

• Collected on a subset of problematic tasks

• Collected at task creation, submission and execution

• Often need modifications to optimize task granularity

• Provide actionable profiles

17



Task Granularity Analysis

• Target: DaCapo and ScalaBench applications

• Input size: largest possible

• Focus only on steady-state [1]

[1] Lengauer et al. A Comprehensive Java Benchmark Study on Memory and Garbage Collection Behavior 

of DaCapo, DaCapo Scala, and SPECjvm2008. ICPE’17. 

18



Fine-Grained Tasks

• Large groups of tasks of same type and low granularity

• pmd: 570 tasks

• tmt: 16’184 tasks

• tradesoap: 112’965 tasks

19



Fine-Grained Tasks

• Significant contention observed

• pmd / tmt: only when fine-grained tasks are executed

20



Fine-Grained Tasks

• pmd / tmt: presence of fine-grained tasks 

significantly interfering with each other

21

• Optimization: merge tasks

Reduce contention between tasks✓
Reduce creation and scheduling overheads✓



Coarse-Grained Tasks

• Coarse-grained tasks in 6 benchmarks

22



Execution Time [%]
0 10 20 30 40 50 60 70 80 90 100

C
P

U
 U

ti
liz

a
ti
o

n
 [

%
]

0

20

40

60

80

100

Coarse-Grained Tasks

• Low or moderate CPU utilization

• Missed parallelization opportunities

23



Execution Time [%]
0 10 20 30 40 50 60 70 80 90 100

C
o

n
te

x
t 

S
w

it
c
h

e
s

10
1

102

103

10
4

Coarse-Grained Tasks

• Low contention in lusearch / sunflow

24



Coarse-Grained Tasks

• lusearch / sunflow: presence of optimizable 

coarse-grained tasks

25

• Moderate CPU utilization and little interference

• Optimization: split tasks into smaller ones

Better utilize CPU✓



Task Granularity Optimization

• Target benchmarks: pmd and lusearch

• Small modifications to task creation, submission and 

execution

• Guided by actionable profiles

26

Optimizing task granularity leads to✓
significant performance improvements



Overhead

• Limited profiling overhead

Low perturbation of the collected metrics✓

27



Conclusions

• We presented tgp, a task-granularity profiler for the JVM

• We analyzed task granularity in DaCapo and ScalaBench

• We revealed fine- and coarse-grained tasks causing performance 

drawbacks

• We optimized task granularity in pmd and lusearch

• Speedups up to 1.53x (pmd) and 1.13x (lusearch)

28



Thank you for the attention

• Andrea Rosà

andrea.rosa@usi.ch

http://www.inf.usi.ch/phd/rosaa

29


