Accurate Fork-join Profiling on the
Java Virtual Machine

Matteo Basso, Eduardo Rosales, Filippo Schiavio,
Andrea Rosa, Walter Binder

Universita della Svizzera italiana, Switzerland

Universita
della
Svizzera
italiana

Euro-Par 2022
August 24, 2022

Introduction

> Fork-Join model in Java

® Included in the Java Class Library since Java 7

® At the core of many Java, Scala, Groovy, and Clojure frameworks
> Understanding and optimizing fork-join computations is crucial
> Dedicated profilers need to:

e Collect specific fork-join metrics

o E.g., task stealing, parent/child task relationships
® Profile task granularity

o A measure of the amount of computations performed by each task

Motivation

> There is no specific fork-join profiler for the Java Virtual Machine (JVM)
> Accurately profiling fork-join computations is challenging:

® Task unforking

e Task cancellation

e Task reinitialization
> Existing tools for task-granularity profiling on the JVM:

e High overhead

e Significant measurement perturbations

® Inaccurate profiles

Contributions

> New profiling model capturing any legitimate (non-erroneous) use
of the Java fork-join framework
® Including specific fork-join metrics and task granularity
e Accurately detecting parent/child relationships between tasks
o Multiple fork-join computations concurrently execute
in the same fork-join pool

> Implementation of profiling model in the wosp profiler
> Evaluation of accuracy and overhead of wosp

® Including comparison with the task-granularity profiler FJProf [1]

[1] E. Rosales et al., "FIProf: Profiling Fork/Join Applications on the Java Virtual Machine." VALUETOOLS 2020. 4

Background - ForklJoinPool API

> Fork-join framework implementation in Java based on work-stealing
> Main abstractions:
e Task (ForkJoinTask)
e Task execution: ForkJoinTask.exec
e Fork-join pool (ForkJoinPool)
> Given two tasks p and ¢ such that p forks ¢
® pisthe parent task

® cis the child (or subtask) of p

Background - Task Reuse

> Reusage of the same task instance to perform multiple executions
e Useful to:
o Reduce object allocations
o Execute pre-constructed trees of tasks in loops
> ForkJoinTask.reinitialize
® Resets the internal state of the task
e Allowed if task was:
o never forked, or

o forked, executed, and all joins completed

Background - Task Unforking

> Unscheduling of a task which was previously forked
e Useful to reduce the task-management overhead of the framework
e Typically used to locally process tasks that could have been—but actually were
not—stolen
> ForkJoinTask.tryUnfork

e Allowed if task execution not already started in another thread

Background - Task Cancellation

> Cancellation of task execution by the user
e Useful for specific optimizations (e.g., short-circuiting)
> ForkJoinTask.cancel
e May fail depending on the internal state of the task
o e.g., if the task has already completed
® Task is unscheduled and execution suppressed

e Before subsequent usages, user must call ForkJoinTask.reinitialize

Profiling Model - Focus and Goals

> We focus on the execution of tasks that have been forked
® Tasks that have been arranged for parallel execution
> We disregard the sequential execution of children tasks
e We incorporate the granularity of any direct synchronous method invocations

into the granularity of their parent tasks

\l

4

Profiling Model - Task State Machine

fork / push([tid, prev-tid]
exec / run[tid, entry, exit]

cancel / clear[tid]

We model each

exec/ €
cancel / €
reinitialize / €

exec/¢€
cancel / €

fork-join task as a

reinitialize / €

finite state machine

exec / run[tid, entry, exit]
cancel / clear[tid]

Four states: INIT, FORKED, RE-INIT, and RE-FORKED
Transitions: events
® Four events: fork, exec, cancel, and reinitialize

e Trace record produced as output
10

> Three traces records:

>

Profiling Model - Task State Machine

fork / push([tid, prev-tid]
exec / run[tid, entry, exit]
cancel / clear[tid]

exec/ €
cancel / €

exec/ €
cancel / €
reinitialize / €

push[tid, prev-tid],

reinitialize / €

clearf(tid],
and run[tid, entry, exit]

tid refers to a unique task usage ID

exec / run[tid, entry, exit]
cancel / clear[tid]

e Sequence of events
® Generated upon the occurrence of each fork
® The same task instance may be associated to multiple IDs due to task reuse

e Reconstruction of task lifecycle done by chaining push trace records

11

Profiling Model - Task State Machine

fork / push([tid, prev-tid]
exec / run[tid, entry, exit]
cancel / clear[tid]

> Three traces records:

exec/ €
cancel / €

exec/ €
cancel / €
reinitialize / €

push[tid, prev-tid],

reinitialize / €

clearf(tid],
and run[tid, entry, exit]

> entry and exit represent the
exec / run[tid, entry, exit]
cancel / clear[tid]

thread-local reference-cycle count
® The clock cycles elapsed during thread execution
until when the measurement was performed

® Used as a measure of task granularity

12

Profiling Model - Task State Machine

fork / push([tid, prev-tid]

exec / run[tid, entry, exit]
cancel / clear[tid]

The run[tid, entry, exit]

exec/ €
cancel / €

exec/ €
cancel / €
reinitialize / €

trace record is composed

reinitialize / €

of two sub-records
run_begin[tid, entry]

and run_end/[exit]

exec / run[tid, entry, exit]
cancel / clear[tid]

® Support nesting runs

® run_begin and run_end are always balanced

13

Profiling Model - Task State Machine

fork / push([tid, prev-tid]

exec / run[tid, entry, exit]
cancel / clear[tid]

No unfork event

exec/ €
cancel / €
reinitialize / €

exec/ €
cancel / €

Unforked tasks will

reinitialize / €

be either
e Executed

e Discarded
exec / run[tid, entry, exit]
cancel / clear[tid]

Leads to overhead reduction

14

>

>

Profiling Model - Work Stealing

Each trace record contains a reference to the thread that produced it
If a push and a run associated to the same ID 1T are produced by different threads t0

and t1, we can conclude that t1 has stolen the task associated to 11 from tO

15

Profiling Model - Nested Executions

> Trace records of a task i may appear between the run_begin and the run_end records
of another task o
e Nested task execution
O o isthe outer task, i is the inner task
® Takes place because of
o Parent/child executions (fork, unfork, and then exec)
o Work stealing

> Nested executions are crucial to correctly compute the task granularity

16

Profiling Model - Parent/Child Rel.

> Quter tasks may not be parent tasks of their corresponding inner tasks
® A push of a task c occurring within the run of another task p

indicates that p is the parent task of ¢

17

Implementation

> We implement our model in a profiler called wosp
> wosp is composed of three main components

e The instrumentation

® The tracing agent

e The postprocessor

18

YV V VY VY

Implementation - Metrics

Task granularity

Parent/child relationships (task dependencies)

Number of tasks stolen from/by a given thread (task-stealing rate)
Load balance

Task execution nesting

Task-reuse rate

19

Implementation - Instrumentation

> wosp is based on DiSL [1]

® A load-time out-of-process Java bytecode instrumentation framework
> High accuracy and low overhead is of paramount importance

® Minimal instrumentation

® Instrumentation code that minimizes online processing

e Thread-local data structures

[1] L. Marek et al, "DiSL: A Domain-Specific Language for Bytecode Instrumentation". AOSD 2012. 20

Implementation - Tracing Agent

> To produce trace records, the instrumentation code calls a tracing agent attached to
the executing JVM via the Java Native Interface (JNI)
e Thread-local traces
e Thread-local buffers
o Allocated at VM startup
o Acquired when needed
e Buffered data is dumped to binary files only at JVM shutdown

> Reference cycles are collected per thread using the PAPI [1] library

[1] http://icl.utk.edu/papi 21

\l

Implementation - Postprocessor

After the application execution, a Java application reads and decodes the binary
traces
Decoding exploits a stack of run_begin records
® run_begin: pushed on the stack
® run_end: the corresponding run_begin is popped from the stack
Task granularity of each task
Parent/child relationships
e Decoding apush[child-id] while run_begin[parent-id]

is at the top of the stack

22

Evaluation

> Evaluated metrics:
® Accuracy (in terms of total task granularity)
® Profiling overhead

> We compare wosp with the task-granularity profiler FJProf [1]

> We target the Renaissance [2] and Aeminium [3] benchmark suites

e Workloads that make use of the peculiar features

of the Java fork-join framework

[1] E. Rosales et al., "FIProf: Profiling Fork/Join Applications on the Java Virtual Machine." VALUETOOLS, 2020.
[2] A. Prokopec et al, "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI, 2019.
[3] A. Fonseca et al, "Evaluation of Runtime Cut-off Approaches for Parallel Programs". VECPAR, 2016.

23

Evaluation - Number of Tasks

Accuracy Overhead

> In many workloads, Workload #Tasks factor (%]
FJProf wosp FJProf wosp FJProf wosp
the number of tasks reported fj-kmeans 666,200 666,200 79.58 99.68 2.12 1.02
fft 65,535 32,768 | 90.51 99.90 1.34 1.01
. . doall 1,572,861 786,432 | 56.23 99.27 4.26 1.02
by FJProf is twice the one heat T02,013 102,712 94.20 99.07 253 1.04
integrate 731 501 55.61 97.31 3.60 1.07
reported by wosp lud 28,367 39,853 55.14 99.95 4.51 1.05
matrixmult 131,071 65,536 | 96.90 99.64 1.11 1.01
e Differences in the mergesort 262,143 131,072 | 45.25 99.32 4.53 1.06
quicksort 1,487,767 1,487, 36.60 97.18 6.21 1.04
profiling models pi 32,767 16,384 96.84 98.19 1.04 1.01
fibonacci [11,405,773 5,702,887 | 16.86 90.20 20.45 1.12
e In these workloads, nbody 351 176 | 99.02 99.77 1.10 1.08

tasks split the work into two parts

o One child task is executed sequentially while the other is forked

24

Evaluation - Number of Tasks

Accurac Overhead
> 1ludis the only workload where wosp ~ Werkload 7 Tasks Factor (%]

FJProf wosp FJProf wosp FJProf wosp
detects more tasks than FJProf fj-kmeans 666,200 666,200 79.58 99.68 2.12 1.02
it 65535 32,768 90.51 99.90 1.34 1.01
doall 1,572,861 786,432 56.23 99.27 4.26 1.02
. The Overhead Of FJPrOf heat 102,913 102,712 94.20 99.07 2.53 1.04
o integrate 731 501 55.61 97.31 3.60 1.07
significantly affects task lud 28,367 39853 55.14 99.95 451 1.05
Tmatrixmuit T3T,071 00,030 90.90 99.64 T.IT 1.1
unforking mergesort 262,143 131,072 45.25 99.32 4.53 1.06
quicksort 1,487,767 1,487,767 36.60 97.18 6.21 1.04
o Fo rkJo:LnTask .t ryUnfo rk pi 32,767 16,384 96.84 98.19 1.04 1.01
fibonacci 11,405,773 5,702,887 16.86 90.20 20.45 1.12
nbody 351 176 99.02 99.77 1.10 1.08

succeeds more frequently as

threads are busy executing instrumentation code, instead of actively stealing

25

Evaluation - Accuracy and Overhead

Accuracy Overhead

> wosp always achieves both a higher Workload 7 Tasks factor (%]
FJProf wosp FJProf wosp FJProf wosp
accuracy and lower overhead fj-kmeans 666,200 666,200 | 79.58 99.68 2.12 1.02
it 65535 32,768 | 90.51 99.90 1.34 1.01
doall 1,572,861 786,432 56.23 99.27 4.26 1.02
than FJPrOf heat 102,913 102,712 94.20 99.07 2.53 1.04
integrate 731 501 | 55.61 97.31 3.60 1.07
> The lowest accuracy and the lud 28,367 39,853 | 55.14 99.95 4.51 1.05
matrixmult 131,071 65,536 | 96.90 99.64 1.11 1.01
highest overhead are experienced mergesort 262,143 131,072 | 45.25 99.32 4.53 1.06
quicksort 1,487,767 1,487,767 | 36.60 97.18 6.21 1.04
Whlle proflllng fibonacci pi 32,767 16,384 96.84 98.19 1.04 1.01
fibonacci 11,405,773 5,702,887 | 16.86 90.20 20.45 1.12
nbody 351 176 99.02 99.77 1.10 1.08

26

Evaluation - Accuracy and Overhead

Accurac Overhead
> General trend: the higher Workload #Tasks Factor (%]
FJProf wosp FJProf wosp FJProf wosp
the number of tasks' fj-kmeans 666,200 666,200 | 79.58 99.68 2.12 1.02
fft 65,535 32,768 | 90.51 99.90 1.34 1.01
. doall 1,572,861 786,432 56.23 99.27 4.26 1.02
the hlgher the Overhead heat 102,913 102,712 94.20 99.07 2.53 1.04
. . integrate 731 501 55.61 97.31 3.60 1.07
> Exception: integrate and lud lud 28,367 30,853 | 55.14 99.95 451 1.0
matrixmult 131,071 65,536 | 96.90 99.64 1.11 1.01
have relatively high overhead mergesort 262,143 131,072 | 45.25 99.32 4.53 1.06
quicksort 1,487,767 1,487,767 | 36.60 97.18 6.21 1.04
fibonacci 11,405,773 5,702,887 | 16.86 90.20 20.45 1.12
° Reason: taSk Unforking Succeeds nbody 351 176 99.02 99.77 1.10 1.08

frequently and tasks are not executed using the exec method

27

Evaluation - Accuracy and Overhead

Accuracy Overhead

> Average accuracy Workload 7 Tasks factor (%]
FJProf wosp FJProf wosp FJProf wosp
e wosp: 98.25% fi-kmeans 666,200 666,200 79.58 99.68 2.12 1.02
fft 65,535 32,768 90.51 99.90 1.34 1.01
. o doall 1,572,861 786,432 56.23 99.27 4.26 1.02
® FJProf:61.69% heat 102,913 102,712 94.20 99.07 2.53 1.04
integrate 731 501 55.61 97.31 3.60 1.07
> Average overhead factor lud 28,367 39,853 55.14 99.95 4.51 1.05
matrixmult 131,071 65,536 96.90 99.64 1.11 1.01
e wosp: 1.04x mergesort 262,143 131,072 45.25 99.32 4.53 1.06
quicksort 1,487,767 1,487,767 36.60 97.18 6.21 1.04
e FJProf:2.91x pi 32,767 16,384 96.84 98.19 1.04 1.01
fibonacci 11,405,773 5,702,887 16.86 90.20 20.45 1.12
nbody 351 176 99.02 99.77 1.10 1.08

28

\

Conclusions

We presented a novel profiling model for fork-join computations on the JVM
e Our model allows accurately profiling several specific fork-join metrics, while
supporting the advanced features of the Java fork-join framework
We presented wosp, a profiler implementing our model
We showed that wosp achieves a notably higher accuracy than FJProf, while
incurring much less overhead
Our model helps in understanding performance and behaviour of fork-join

applications

29

Future Work

> Conduct a large-scale characterization of Java fork-join applications

> Develop a visualization tool

30

L

Thanks for your attention

> (Contacts:

Matteo Basso

matteo.basso@usi.ch

31

