
Università della Svizzera italiana, Switzerland

Matteo Basso, Eduardo Rosales, Filippo Schiavio,
Andrea Rosà, Walter Binder

Accurate Fork-join Profiling on the 
Java Virtual Machine

Euro-Par 2022
August 24, 2022



Introduction

2

➢ Fork-Join model in Java 

● Included in the Java Class Library since Java 7

● At the core of many Java, Scala, Groovy, and Clojure frameworks

➢ Understanding and optimizing fork-join computations is crucial

➢ Dedicated profilers need to:

● Collect specific fork-join metrics 

○ E.g., task stealing, parent/child task relationships

● Profile task granularity

○ A measure of the amount of computations performed by each task



Motivation

3

➢ There is no specific fork-join profiler for the Java Virtual Machine (JVM)

➢ Accurately profiling fork-join computations is challenging:

● Task unforking

● Task cancellation

● Task reinitialization

➢ Existing tools for task-granularity profiling on the JVM:

● High overhead

● Significant measurement perturbations

● Inaccurate profiles



Contributions

4

➢ New profiling model capturing any legitimate (non-erroneous) use

of the Java fork-join framework

● Including specific fork-join metrics and task granularity

● Accurately detecting parent/child relationships between tasks

○ Multiple fork-join computations concurrently execute 

in the same fork-join pool

➢ Implementation of profiling model in the wosp profiler 

➢ Evaluation of accuracy and overhead of wosp

● Including comparison with the task-granularity profiler FJProf [1]

[1] E. Rosales et al., "FJProf: Profiling Fork/Join Applications on the Java Virtual Machine." VALUETOOLS 2020.



Background - ForkJoinPool API

5

➢ Fork-join framework implementation in Java based on work-stealing

➢ Main abstractions: 

● Task (ForkJoinTask)

● Task execution: ForkJoinTask.exec

● Fork-join pool (ForkJoinPool)

➢ Given two tasks p and c such that p forks c

● p is the parent task

● c is the child (or subtask) of p



Background - Task Reuse

6

➢ Reusage of the same task instance to perform multiple executions

● Useful to: 

○ Reduce object allocations

○ Execute pre-constructed trees of tasks in loops

➢ ForkJoinTask.reinitialize

● Resets the internal state of the task

● Allowed if task was: 

○ never forked, or

○ forked, executed, and all joins completed



Background - Task Unforking

7

➢ Unscheduling of a task which was previously forked

● Useful to reduce the task-management overhead of the framework

● Typically used to locally process tasks that could have been—but actually were 

not—stolen

➢ ForkJoinTask.tryUnfork

● Allowed if task execution not already started in another thread



Background - Task Cancellation

8

➢ Cancellation of task execution by the user

● Useful for specific optimizations (e.g., short-circuiting)

➢ ForkJoinTask.cancel

● May fail depending on the internal state of the task

○ e.g., if the task has already completed

● Task is unscheduled and execution suppressed

● Before subsequent usages, user must call ForkJoinTask.reinitialize



Profiling Model - Focus and Goals

9

➢ We focus on the execution of tasks that have been forked

● Tasks that have been arranged for parallel execution

➢ We disregard the sequential execution of children tasks

● We incorporate the granularity of any direct synchronous method invocations 

into the granularity of their parent tasks



Profiling Model - Task State Machine

10

➢ We model each

fork-join task as a

finite state machine

➢ Four states: INIT, FORKED, RE-INIT, and RE-FORKED

➢ Transitions: events

● Four events: fork, exec, cancel, and reinitialize

● Trace record produced as output



Profiling Model - Task State Machine

11

➢ Three traces records:

push[tid, prev-tid],

clear[tid], 

and run[tid, entry, exit]

➢ tid refers to a unique task usage ID

● Sequence of events

● Generated upon the occurrence of each fork

● The same task instance may be associated to multiple IDs due to task reuse

● Reconstruction of task lifecycle done by chaining push trace records



Profiling Model - Task State Machine

12

➢ Three traces records:

push[tid, prev-tid],

clear[tid], 

and run[tid, entry, exit]

➢ entry and exit represent the 

thread-local reference-cycle count

● The clock cycles elapsed during thread execution 

until when the measurement was performed

● Used as a measure of task granularity



Profiling Model - Task State Machine

13

➢ The run[tid, entry, exit]

trace record is composed 

of two sub-records

run_begin[tid, entry] 

and run_end[exit]

● Support nesting runs

● run_begin and run_end are always balanced



Profiling Model - Task State Machine

14

➢ No unfork event

➢ Unforked tasks will

be either

● Executed

● Discarded

➢ Leads to overhead reduction



Profiling Model - Work Stealing

15

➢ Each trace record contains a reference to the thread that produced it

➢ If a push and a run associated to the same ID π are produced by different threads t0 

and t1, we can conclude that t1 has stolen the task associated to π from t0



Profiling Model - Nested Executions

16

➢ Trace records of a task i may appear between the run_begin and the run_end records 

of another task o

● Nested task execution

○ o is the outer task, i is the inner task

● Takes place because of

○ Parent/child executions (fork, unfork, and then exec)

○ Work stealing

➢ Nested executions are crucial to correctly compute the task granularity



Profiling Model - Parent/Child Rel.

17

➢ Outer tasks may not be parent tasks of their corresponding inner tasks

● A push of a task c occurring within the run of another task p

indicates that p is the parent task of c



Implementation

18

➢ We implement our model in a profiler called wosp

➢ wosp is composed of three main components

● The instrumentation

● The tracing agent

● The postprocessor



Implementation - Metrics

19

➢ Task granularity

➢ Parent/child relationships (task dependencies)

➢ Number of tasks stolen from/by a given thread (task-stealing rate)

➢ Load balance

➢ Task execution nesting

➢ Task-reuse rate



Implementation - Instrumentation

20

➢ wosp is based on DiSL [1]

● A load-time out-of-process Java bytecode instrumentation framework

➢ High accuracy and low overhead is of paramount importance

● Minimal instrumentation

● Instrumentation code that minimizes online processing

● Thread-local data structures

[1] L. Marek et al, "DiSL: A Domain-Specific Language for Bytecode Instrumentation". AOSD 2012.



Implementation - Tracing Agent

21

➢ To produce trace records, the instrumentation code calls a tracing agent attached to 

the executing JVM via the Java Native Interface (JNI)

● Thread-local traces

● Thread-local buffers

○ Allocated at VM startup

○ Acquired when needed

● Buffered data is dumped to binary files only at JVM shutdown

➢ Reference cycles are collected per thread using the PAPI [1] library

[1] http://icl.utk.edu/papi



Implementation - Postprocessor

22

➢ After the application execution, a Java application reads and decodes the binary 

traces

➢ Decoding exploits a stack of run_begin records

● run_begin: pushed on the stack

● run_end: the corresponding run_begin is popped from the stack

➢ Task granularity of each task

➢ Parent/child relationships

● Decoding a push[child-id] while run_begin[parent-id]

is at the top of the stack



Evaluation

23

➢ Evaluated metrics: 

● Accuracy (in terms of total task granularity)

● Profiling overhead

➢ We compare wosp with the task-granularity profiler FJProf [1]

[1] E. Rosales et al., "FJProf: Profiling Fork/Join Applications on the Java Virtual Machine." VALUETOOLS, 2020.

➢ We target the Renaissance [2] and Aeminium [3] benchmark suites

[2] A. Prokopec et al, "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI, 2019.

[3] A. Fonseca et al, "Evaluation of Runtime Cut-off Approaches for Parallel Programs". VECPAR, 2016.

● Workloads that make use of the peculiar features 

of the Java fork-join framework



Evaluation - Number of Tasks

24

➢ In many workloads,

the number of tasks reported

by FJProf is twice the one 

reported by wosp

● Differences in the 

profiling models

● In these workloads,

tasks split the work into two parts

○ One child task is executed sequentially while the other is forked



Evaluation - Number of Tasks

25

➢ lud is the only workload where wosp

detects more tasks than FJProf

● The overhead of FJProf

significantly affects task

unforking

● ForkJoinTask.tryUnfork

succeeds more frequently as 

threads are busy executing instrumentation code, instead of actively stealing



Evaluation - Accuracy and Overhead

26

➢ wosp always achieves both a higher

accuracy and lower overhead

than FJProf

➢ The lowest accuracy and the

highest overhead are experienced

while profiling fibonacci



➢ General trend: the higher 

the number of tasks, 

the higher the overhead

➢ Exception: integrate and lud

have relatively high overhead

even if they use few tasks

● Reason: task unforking succeeds

frequently and tasks are not executed using the exec method

Evaluation - Accuracy and Overhead

27



Evaluation - Accuracy and Overhead

28

➢ Average accuracy

● wosp: 98.25%

● FJProf: 61.69%

➢ Average overhead factor

● wosp: 1.04×

● FJProf: 2.91×



➢ We presented a novel profiling model for fork-join computations on the JVM

● Our model allows accurately profiling several specific fork-join metrics, while 

supporting the advanced features of the Java fork-join framework

➢ We presented wosp, a profiler implementing our model

➢ We showed that wosp achieves a notably higher accuracy than FJProf, while 

incurring much less overhead

➢ Our model helps in understanding performance and behaviour of fork-join 

applications

Conclusions

29



➢ Conduct a large-scale characterization of Java fork-join applications

➢ Develop a visualization tool

Future Work

30



➢ Contacts:

Matteo Basso

matteo.basso@usi.ch

31

Thanks for your attention


