
Accurate Profiling in the Presence of Dynamic Compilation

Howto

Yudi Zheng, Lubomı́r Bulej, Walter Binder

October 8, 2015

1 Getting Started

Our approach to accurate bycode-instrumentation-based profiling is implemented in Oracle’s Graal compiler1,
and now integrated into openjdk.

The API to our approach is folded into com.oracle.graal.api.directives.GraalDirectives:

Method Description

instrumentationBegin(int) Marks the beginning of the instrumentation boundary. It requires an argu-
ment indicating the length of the path between the inspected base program
node and the instrumentation in the control flow graph.

instrumentationToInvokeBegin(int) Similar to instrumentationBegin(int) but ensures the instrumentation is valid
only if the inspected base program node is an invocation. Graal intrinsifies
invocation during bytecode parsing, and may mislead the inspected base
program node.

instrumentationEnd Marks the end of the instrumentation boundary.
inCompiledCode Returns a boolean value indicating whether the method is executed in com-

piled code.
rootName Returns the name of the root method for the current compilation task.
isMethodInlined Returns a boolean value indicating whether the enclosing method is inlined.

Valid only within the instrumentation (i.e. surrounded by invocations to
instrumentationBegin and instrumentationEnd).

runtimePath Returns an integer representing a taken path at runtime. This merges
getAllocationType and getLockType. Valid only within the instrumentation,
and requires the inspected allocation or lock acquisition to precede the in-
strumentation.

To setup a Graal development environment, run:

$ hg clone https://bitbucket.org/allr/mx
$ export PATH=$PWD/mx:$PATH
$ mkdir graal
$ cd graal
$ mx sclone http://hg.openjdk.java.net/graal/graal-compiler
$ cd graal-compiler
$ mx build

During the compilation, you will be asked to choose Java distributions for JAVA HOME and
EXTRA JAVA HOME. Set them to point to the location of JDK 8. You should select jvmci when
being asked for the default VM.

Note For details, visit https://wiki.openjdk.java.net/display/Graal/Instructions

1http://openjdk.java.net/projects/graal/

1

Once the compilation is finished, you can launch a JVM with Graal compiler using “mx vm”. For instance,
instead of running “java -version”, you can run “mx vm -version”, and it will display the following message:

java version "1.8.0_60"
Java(TM) SE Runtime Environment (build 1.8.0_60-b27)
OpenJDK 64-Bit JVMCI VM (build {IDENTIFIER}, mixed mode)

Various VM flags (passed to “mx vm”) should be taken into account while applying our approach:

Flag Description

-G:+UseGraalInstrumentation Enable this flag to activate our approach.
-G:-RemoveNeverExecutedCode Disable this flag if the instrumentation code is guarded by inCompiledCode.

Otherwise, the compiler will insert a de-optimization, and the instrumenta-
tion will never be executed.

-G:-InlineDuringParsing Disable this flag if you want to inspect the inlining behavior using our ap-
proach. Otherwise, the inlining will be performed during bytecode parsing,
and cannot be observed through our approach.

-G:SmallCompiledLowLevelGraphSize Set to 0 to prevent compiled-code’s size contributing to inlining heuristics.
-XX:-TieredCompilation Disable this flag to disallow tiered compilation. Currently, our approach is

only implemented in Graal and the C1-compiled code will be treated like in
interpreting mode.

-XX:+BootstrapJVMCI Enable this flag to perform a boot strapping compilation for the Graal com-
piler’s code. This will limit the interference from the dynamic compilation
of Java library classes and Graal itself.

2 A Close Look

If you would like to test our approach more extensively, the easiest way is to add a new test into the
Compiler Testing Framework. We several many test cases that target partial escape analysis and inlining
for illustration. The source code of these test cases can be found at https://github.com/mur47x111/

CompilerTesting. Checkout and run using the following commands:

$ git clone https://github.com/mur47x111/CompilerTesting.git
$ cd CompilerTesting && ant
$ export GRAAL_HOME=/path/to/graal-compiler
$./runTest pea.TestSuite inlining.TestSuite query.TestSuite

Specifically, the test cases inlining.PolyMethod* demonstrate the two polymorphism-related reasons for
not inlining call sites mentioned in Table 3 in our paper. Starting with these test cases, you may create
similar test cases to validate Graal’s default inlining policy. You can also create new test cases targeting
other Graal optimizations using the following steps:

1. Create a sub class extending ch.usi.dag.testing.JITTestCase

2. Override warmup() and isWarmedUp(). During the warmup phase, warmup() is called repeatedly until
isWarmedUp() returns true.

3. Create test methods annotated by @Test.

Note You must carefully assign the argument to instrumentationBegin when applying our approach in the
Java source code. For instance, the new statement will be compiled into a new bytecode and an invokespecial
to the class’s constructor. You should pass -2 to instrumentationBegin such that the instrumentation will be
associated with the directly preceding new statement.

3 Tool Support

The source code of the profilers mentioned in our paper can be found at https://github.com/mur47x111/
graal-assisted-profilers. The following steps allow you to execute the profiler and to observe the

2

produced output messages:

1. Check out and compile DiSL-graal

$ git clone https://github.com/mur47x111/DiSL-graal.git
$ cd DiSL-graal && ant
$ export DISL_HOME=/path/to/DiSL-graal

2. Check out graal-assisted-profilers

$ git clone https://github.com/mur47x111/graal-assisted-profilers.git
$ cd graal-assisted-profilers

3. Enter one of the profiler directories and compile.

$ cd AllocationProfiler && ant

4. Execute the run script to launch the profiler with your application.

$../scripts/run /path/to/profiler.jar -cp /path/to/application/classes YourAppName

5. Execute the profile script to launch the profiler with the DaCapo benchmarks.

$../scripts/profile /path/to/profiler.jar /path/to/dacapo-9.12-bach.jar

The scope of the profiling can be configured:

• The choice of benchmarks is determined by graal-assisted-profilers/config/bench.txt, which is a
symlink to bench-sanity.txt by default. Linking it to bech-all.txt will cause the profiler scripts to
use the benchmarks from the evaluation setup of our paper.

• The choice of classes and methods to profile is determined by graal-assisted-profilers/config/excl.txt.
Classes that match the expressions in this file will be excluded from instrumentation and hence
will not be profiled. By default the JDK classes are excluded. Removing these expressions
will cause the JDK classes, the GraalVM, and all its dependencies to be profiled as well, which
will significantly increase the time needed to collect the profiles. Moreover, infinite recursive
invocations may occur if you profile the profiler itself. For solving such problem, check out DiSL’s
dynamic bypassing feature or ShadowVM.

• The number of DaCapo benchmark iterations is controlled by the ITERATIONS variable in each
profile script. Adjust the number following the “-n” option in the ITERATIONS variable to change
the number of iterations.

• The workload size of DaCapo benchmarks is controlled by the WORKLOAD variable in each
profile script. The variable is empty by default, which selects the default workload size. Use the
“-s” DaCapo option to change the workload size, by setting the WORKLOAD variable to, e.g.,
“-s small”, or “-s large”, etc.

Below we briefly describe each profiler and the corresponding outputs. Please consult our paper for additional
details on each profiler.

• AllocationProfiler tracks types (TLAB/heap/stack allocation) of object allocations for each alloca-
tion site.

• InliningProfiler profiles hotness of call-sites that are not inlined.

• ReceiverProfiler profiles receiver types for each call site keyed to 0, 1, 2, and 3 levels of calling
context.

3

