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Abstract—Since Java 8, streams ease the development of data
transformations using a declarative style based on functional
programming. Some recent studies aim at shedding light on
how streams are used. However, they consider only small sets
of applications and mainly apply static analysis techniques,
leaving the large-scale analysis of dynamic metrics focusing on
stream processing an open research question. In this paper, we
present the first large-scale empirical study on the use of streams
in Java. We present a novel dynamic analysis for collecting
runtime information and key metrics that enable the fine-grained
characterization of sequential and parallel stream processing. We
massively apply our dynamic analysis using a fully automated
approach, supported by a distributed infrastructure to mine
public software projects hosted on GitHub. Our findings advance
the understanding of the use of streams, both confirming some
of the results of previous studies at a much larger scale, as well
as revealing previously unobserved findings in the use of streams.

Index Terms—Java streams, Stream processing, Code repos-
itories, Empirical studies, Large-scale study, Characterization,
Dynamic program analysis, GitHub, Java Virtual Machine

I. INTRODUCTION

The Stream API [1] was added in Java 8 to allow developers
perform data processing using a declarative and concise style
based on functional programming [2]. The Stream API provides
two main abstractions. First, the stream, which represents a
sequence of elements that comes from a data source. Second,
the stream pipeline, a sequence of operations that are applied to
the elements in the stream upon execution. The operations in a
pipeline allow performing actions such as mappings, searches,
filtering, or data reductions. Streams can be created from diverse
data sources, including collections, arrays, and files. Streams are
versatile and are often a good option to implement algorithms
that uniformly transform a sequence of elements to obtain a
result [3]. Streams can be used to improve software design,
making an application easier to extend and maintain. Moreover,
a key feature of streams is that they can be processed in parallel
just by calling a single method [4].

Recently, streams have received the attention of researchers
studying their degree of adoption. At the time of writing, three
studies analyzed the use of streams in the wild. Tanaka et
al. [5] mine 100 software projects to study the use of lambda
expressions [3], streams, and the java.util.Optional class.
Khatchadourian et al. [6] examine 34 Java projects to study the
use of streams in Java. This work represents the first attempt
to specifically discover use cases of the Stream API. Finally,

Nostas et al. [7] study the use of streams in 610 Java projects.
This work is a partial replication of the study of Khatchadourian
et al. considering a larger number of projects and validating
most of the results previously obtained. Unfortunately, the
aforementioned studies consider only a small number of
projects. Furthermore, the above studies rely mainly on manual
code inspection and static analysis techniques, which makes
it impossible to analyze dynamic metrics unique to streams.
Specifically, there is yet limited empirical evidence to make
general and practical conclusions on how the Stream API is
used.

Contributions. To bridge this gap, we first present Stream-
Analyzer, a novel dynamic program analysis (DPA) specifically
designed for the characterization of stream processing on
the Java Virtual Machine (JVM). Stream-Analyzer accurately
detects each stream used by a Java application, properly
targeting all forms of stream creation and execution enabled by
the Stream API. Conducting a large-scale study on the use of
streams requires detecting stream processing exposed by a wide
and diverse range of Java applications along with collecting
representative information that best characterize streams. To
this end, Stream-Analyzer specifically targets a careful selection
of metrics suitable to be massively collected in the wild
and whose analysis enables a fine-grained characterization
of stream processing. Our tool is designed to run on top of
a container-based, distributed infrastructure [8] for executing
custom analyses on code repositories without requiring manual
intervention or manual code inspection.

We use Stream-Analyzer to conduct the first large-scale
empirical study on the use of streams in Java. Our study targets
open-source software projects publicly available in GitHub [9],
for a total of 1 808 415 projects analyzed, among which we find
132 211 projects that use the Stream API. Our work analyzes
a total of 620 033 509 streams. On the one hand, we confirm
that the findings of previous studies [5]–[7] conducted at a
smaller scale also hold at a large scale. On the other hand, we
provide new insights on how streams are used, thanks to the
analysis of runtime information previously overlooked.

Outline. The rest of the paper is organized as follows.
Sec. II provides background information. Sec. III describes the
novel DPA Stream-Analyzer. Sec. IV presents our large-scale
empirical study. Sec. V discusses the limitations of our work.
Sec. VI reviews work related to our approach. Finally, Sec. VII
presents our conclusions.



1 transactions.stream()
2 .parallel()
3 .filter(t -> t.getStatus() == Transaction.VALID)
4 .map(Transaction::getID)
5 .collect(Collectors.toSet());

Fig. 1: A simple stream example.

II. BACKGROUND

This section introduces key concepts and the terminology
used in our study.

Stream and pipeline. A stream is a sequence of data
elements supporting either sequential or parallel operations
that are structured in stages within an associated pipeline. The
elements in a stream can come from multiple data sources
including collections, generators of pseudo-random numbers,
arrays, files, and strings [3].

Fig. 1 shows a simple Java code example of a stream. In
line 1, a stream is generated from transactions, i.e., a list of
objects of class Transaction (whose declaration and details
are omitted here and are not relevant). The pipeline contains
four operations: parallel which parallelizes the execution of
the pipeline (line 2), filter that discards invalid transactions
(line 3), map which extracts the identifiers from the remaining
transactions (line 4), and collect that here accumulates the
identifiers of valid transactions into a set (line 5). Therefore,
the stream in the example is used to collect the set of IDs of
valid transactions available in the list transactions.

Source method. Stream creation takes place upon the call
to a source method, i.e., the method used to create a stream.
In the example, stream (line 1) is the source method, which
is defined in the interface java.util.Collection and here
generates a stream from the data source transactions.

Source collection type. Many stream data sources imple-
ment the interface Collection1. We call source collection
type the specific collection type from which a stream is
created, if any. In the example, since transactions is a
list, the source collection type is a concrete implementation of
java.util.List, e.g., java.util.ArrayList.

Stream type. The Stream API supports four types
of streams. The interface java.util.stream.Stream

models a stream of objects, while the interfaces
java.util.stream.IntStream, java.util.stream.

LongStream, and java.util.stream.DoubleStream

model streams of primitive types. In the example, we use an
object-based stream type.

Characteristics of the data source. A stream has associated
a spliterator, i.e., the parallel analogue of an iterator; it
describes a (possibly infinite) collection of elements, with
support for sequentially advancing, bulk traversal, and splitting
off some portion of an input data for parallel computation [1].
Among others, the characteristics of the spliterator define
whether the data source has an encounter order (i.e., the

1The fully qualified name of a class/interface appears upon first occurrence
in the text; thereafter, we report only the class/interface name.

data source makes its elements available in a defined order),
is sorted (i.e., the elements in the data source have a sort
order), is concurrent (i.e., the data source is designed to handle
concurrent modification), is distinct (i.e., the data source does
not allow duplicates) or is immutable (i.e., data source elements
cannot be added, replaced, or removed). The spliterator may
also report the data-source size, i.e., the total number of
elements in the data source, if known. Upon stream creation,
this size is the total number of elements available in the data
source. In the example, the characteristics of the data source
upon stream creation depend on the concrete implementation
of List used at runtime to create the stream. For instance, by
default an ArrayList has an encounter order (the elements
are encountered in index order) and is neither sorted, nor
concurrent, nor immutable, nor distinct, while the data-source
size would correspond to the number of elements in the
collection.

Operations. Upon stream creation, a pipeline is generated
and it may have associated operations. Operations are divided
into intermediate (i.e., operations that produce other streams
that can be further processed) and terminal (i.e., operations
triggering the execution of the stream).

Intermediate operations. Intermediate operations are lazy,
i.e., they do not perform any processing until a terminal
operation is invoked [1]. Intermediate operations can be
stateless or stateful. In stateless operations, each element can
be processed independently from operations on other elements,
while in stateful operations, the current state may depend on
the state of previously seen elements [1]. An example of a
stateful operation is limit, which truncates elements such
that the size of the resulting stream is no longer than a given
length [10]. In Fig. 1, parallel, filter, and map are all
stateless intermediate operations.

Terminal operations. Stream execution takes place only if a
stream has a terminal operation. The terminal operation triggers
the traversal of the pipeline either to return a result (e.g., an
array) or to produce side effects (e.g., to print all elements).
A stream can have at most one terminal operation, which can
be executed only once [1]. In the example, collect is the
terminal operation that triggers stream execution.

Execution mode. A stream has an execution mode defining
whether the stream is to be executed sequentially or in parallel.
When a parallel stream is executed, typically pipeline traversal
is performed by fork/join2 tasks, all of which execute in a
fork/join pool [12].

The execution mode of a stream is first set upon stream
creation. In the example, method stream creates a sequential
stream. Alternatively, calling method parallelStream would
create a parallel stream. The execution mode can be switched by
calling the sequential or parallel intermediate operations.
In the example, the execution mode is parallel.

Length. A pipeline has a length, i.e., the total number
of operations in the pipeline. In the example, the length is

2Fork/join parallelism recursively splits (fork) work into tasks that are
executed in parallel, waiting for them to complete, and then typically merging
(join) the results produced by the forked tasks [11].



four, as the operations parallel, filter, map, and collect

compose the pipeline.
Collector. In line 5, collect performs a reduction us-

ing a collector, i.e., an implementation of the interface
java.util.stream.Collector that enables mutable reduc-
tion operations, such as accumulating elements into collections
or summarizing elements according to various user-defined
criteria [13]. In the example, the collector is the object returned
by Collectors.toSet(), which accumulates input elements
into a set.

Stream result type. After execution, the stream produces
an output or a side effect. We call stream result type the type
of the output produced after the stream is executed (typically
a collection, an array, or a scalar). In the example, the stream
result type is the concrete implementation of java.util.Set
used at runtime by the collector, i.e., java.util.HashSet.

III. STREAM-ANALYZER

In this section, we introduce Stream-Analyzer, our DPA
to collect dynamic metrics on streams. We first detail the
events and entities targeted by Stream-Analyzer as well as the
runtime information it collects (Sec. III-A). Then, we provide
implementation details of Stream-Analyzer (Sec. III-B).

A. Metric Collection

Stream-Analyzer is a novel DPA specifically designed to
characterize stream processing in the wild. Stream-Analyzer
collects runtime information and metrics unique to streams,
which enable a detailed characterization of both sequential
and parallel stream processing on the JVM. To do so, Stream-
Analyzer intercepts all forms of stream creation and execution
available in the Stream API, accurately detecting each stream
used in a Java application. Moreover, Stream-Analyzer targets
a careful selection of information and metrics suitable to be
massively collected in the wild. The rest of the section explains
the data collected by our DPA, discriminating between the
events related to stream creation and execution.

Stream creation. Upon stream creation, a pipeline associ-
ated to the new stream is created. We consider as a stream
every instance of the interface java.util.BaseStream,
the top-level interface of the Stream API [14]. We con-
sider as a pipeline every subtype of the abstract class
java.util.stream.AbstractPipeline.

In the Stream API, pipeline creation involves instantiating
a new object that represents the first stage of the
pipeline, i.e., the head. This object is created via the
constructors of the subtypes of AbstractPipeline,
i.e., ReferencePipeline$Head, IntPipeline$Head,
LongPipeline$Head, or DoublePipeline$Head. All of
these classes belong to the java.util.stream package
and are the core implementations of the Stream interface
and the primitive stream types (IntStream, LongStream,
and DoubleStream, respectively). Stream-Analyzer uses the
reference to the object representing the head of the pipeline
(which is associated to a single stream) to produce a unique
ID identifying the stream. This identifier is crucial to associate

all collected information to the creation and execution of a
specific stream.

The creation of a stream takes place in two ways, either by
using the class java.util.stream.StreamSupport, which
provides low-level methods to create streams using a spliterator,
or by calling one of such methods through a wrapper method in
other classes, e.g., Collections.stream. Stream-Analyzer
detects both ways of creating streams to collect the source
method. In addition, the stream data source may implement
the interface Collection, which Stream-Analyzer instruments
to collect the source collection type, if any. Stream-Analyzer
also intercepts stream creation to query the characteristics of
the spliterator associated to the new stream. Finally, Stream-
Analyzer collects the data-source size as reported by the
spliterator, a key metric that enables quantifying the number
of elements in the data source upon stream creation.

Once a pipeline is created, operations can be appended to
it. Stream-Analyzer intercepts calls to all methods enabling
the appending of intermediate operations as defined in the
interfaces BaseStream, Stream, IntStream, LongStream
and DoubleStream. In the Stream API, appending an inter-
mediate operation to a pipeline typically involves instantiating
a new object representing the new stage. Stream-Analyzer uses
the reference to this new stage of the pipeline to produce an
ID which uniquely identifies the operation appended. Stream-
Analyzer also captures a reference to the previous stage of the
pipeline, which can be either the head or another operation. In
such a way, having a unique identifier for each stage of the
pipeline is crucial to subsequently attribute a newly detected
operation to a specific pipeline. Stream-Analyzer collects the
name of the method used to append an intermediate operation
and its type. Overall, the data collected upon stream creation
enables describing how a stream is generated, characterizing in
detail the data source, and the set of transformations performed
by intermediate operations in the pipeline.

Stream execution. Stream execution requires the invocation
of a terminal operation which triggers the traversal of the
pipeline. Stream-Analyzer tracks calls to all methods triggering
stream execution that are defined in the interfaces BaseStream,
Stream, IntStream, LongStream, and DoubleStream. Dif-
ferently from intermediate operations, in the Stream API calling
a terminal operation does not involve appending a new stage
to the pipeline. As a result, Stream-Analyzer identifies and
attributes a terminal operation to a pipeline by capturing the
reference to the last stage of the pipeline before the terminal
operation is called on it. Stream-Analyzer also collects the
name of the method used to invoke the terminal operation and
the stream result type. When the terminal operation performs
a reduction via collect, Stream-Analyzer captures the name
of the collector used. Finally, the length of the pipeline is
computed along with the execution mode of the stream. The
length is a key metric quantifying the set of data transformations
done through a pipeline. Overall, the collected information is
used to analyze how a pipeline is traversed, describing the kind
of data processing that is performed, and the output produced
by a stream.
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Fig. 2: High-level architecture of Stream-Analyzer.

B. Implementation

Fig. 2 shows the high-level architecture of Stream-Analyzer.
Our DPA is built upon DiSL [15], a framework for the JVM

to perform dynamic analysis via bytecode instrumentation. The
DiSL weaver guarantees full bytecode coverage, i.e., DiSL
instruments every Java method with a bytecode representation,
enabling the complete instrumentation of the Java class library,
which is notoriously hard to instrument [16]. This is important
for our purposes as the Stream API is fully implemented within
the Java class library, allowing Stream-Analyzer to accurately
profile all streams used by an application, as well as all targeted
events related to stream creation and execution.

A native agent attached to the JVM executing the application
under analysis (hereafter called observed JVM) intercepts
classloading, sending loaded classes to the DiSL server, i.e., a
separate JVM where DiSL is deployed. In the DiSL server, the
instrumentation logic determines the methods to be targeted
and inserts the instrumentation code needed to collect the
target metrics. Then, the instrumented classes are returned
to the observed JVM where they are linked [17], allowing
Stream-Analyzer to characterize stream processing.

To further isolate the analysis from the execution of the
observed JVM, Stream-Analyzer uses Shadow VM [18], a
deployment setting of DiSL which allows running analyses in
a separate JVM process, mitigating the perturbations incurred
by the inserted instrumentation code while also preventing
known issues inherent to non-isolated approaches [19]. Upon
collection, the information and metrics are sent to the Shadow
VM, which contains most of the logic and data structures
supporting the analysis of stream processing. This is possible
thanks to a second native agent (sending data to the Shadow
VM) attached to the observed JVM. Finally, upon application
completion, Stream-Analyzer performs offline post-processing
of the collected data, producing a single integrated profile
containing all the information collected for each stream used
in the observed application. The profile of each observed JVM
is stored in a database, which can be queried later to produce
aggregated data and statistics on all analyzed applications.

IV. LARGE-SCALE ANALYSIS

In this section, we describe our approach to characterize
streams in the wild as well as the findings of our study. We
first detail the methodology used for our analysis (Sec. IV-A).
Then, we present the results of our study (Sec. IV-B).

A. Methodology

All the analyzed projects are open source Java applications
that are publicly available in GitHub. We considered only
projects with at least one commit in year 2020 (until October).
We analyzed the latest version (commit) of the projects in
that period. Our choice is motivated by the need to complete
our study in the wild in a reasonable time with the available
resources. Furthermore, the chosen timeframe avoids old,
obsolete, or inactive software projects that could bias the study.

For the purposes of mining GitHub to search for Java
applications, we use NAB [8], a distributed infrastructure
for automatically executing custom analyses on open-source
projects hosted in public code repositories. A key feature of
NAB is that is provides a plugin mechanism to integrate existing
analyzes so that they can be applied to software repositories.
We leverage this feature to run Stream-Analyzer on top of
NAB to massively characterize stream processing in the wild.
Another important feature of NAB is that it can be deployed
using containers. Containerization is crucial to our purposes as
it enables isolating the underlying execution environment and
operating system, to prevent potential issues triggered while
dynamically analyzing unverified software projects that may
contain buggy or even harmful code. Moreover, the use of
containers eases parallelizing analysis execution by leveraging
multicores, along with simplifying the deployment of the
analysis on multiple machines.

A key challenge in conducting our study is the need for
automatically and massively analyzing the runtime behavior
of software projects that were not designed or tested for this
purpose, and hence may fail if DPAs are applied to them.
A fully automatic approach should therefore first search for
executable code available in a project and then attempt to
execute it. NAB enables the analysis of code that can be
executed through software tests, specifically JUnit [20] tests.
In prior work [8], [21], we successfully located analyzable
executable code in the wild, taking advantage of the fact that
JUnit is a well-established and very popular testing framework
for the JVM to implement software testing. We rely on NAB
to analyze executable code exercised by JUnit tests, which can
be built and run automatically from a build system. We target
all projects using maven [22] as build system, which we use
to download the project dependencies (as configured originally
by the project developers), compile the sources, and run the
available unit tests.

We use NAB to crawl GitHub looking for Java projects, clone
each project found, and apply Stream-Analyzer to characterize
the stream processing exposed by the application. While
processing a candidate project, many kinds of failures can
happen. At a very early stage, the cloning of the project can
fail. In our approach, we retry cloning the project up to three
times, after which we discard it from our analysis. Another
challenge we face while analyzing projects in the wild is
the need for handling failures both when attempting to build
a project and when trying to execute the unit tests. In our
approach, we discard the analysis of projects for which maven



TABLE I: Most popular source methods.

Source Method Occurrences %

Collection.stream 349 303 956 56.33
IntStream.range 87 677 566 14.14
Arrays.stream 58 690 188 9.46
Collections$SynchronizedCollection.stream 27 069 317 4.37
Stream.of 26 565 005 4.28
Stream.concat 22 869 945 3.69
Random.ints 12 020 051 1.94
Collections$UnmodifiableCollection.stream 11 795 112 1.90
Stream.empty 7 397 430 1.19
CharSequence.chars 5 001 524 0.81

fails either to build the sources or to locate and execute testing
code. Moreover, even when the testing code can be executed,
there is the need for dealing with buggy, malicious or non-
terminating code. To this end, we set an analysis timeout, i.e.,
a maximum execution time for the analysis to complete. We set
the analysis timeout to be one hour, after which the analysis of
a project is halted to prevent the application from excessively
consuming the available resources.

We initially analyzed a total of 1 808 415 Java projects. This
extensive selection allows diversity in aspects such as size,
domain, popularity, and testing practices, which is crucial to
improve the representativeness of our study. From this initial
set of projects, we discarded the ones that failed to clone, failed
to build, lacked JUnit tests, failed to execute the unit tests,
terminated due to an analysis timeout, or exposed no stream
processing, resulting in 132 211 analyzed projects.

B. Results

In this subsection, we present the results of our study in
the form of findings. When applicable, we compare them with
the corresponding findings highlighted at a smaller scale by
related work.

Source methods. We find a total of 47 different source
methods among which we summarize the ten most popular
ones in Table I. Our findings show that streams are created
mainly from collections (62.60%). Other popular source
methods include IntStream.range (returns a sequential
IntStream of consecutive integers in a given range [23]),
java.util.Arrays.stream (returns a sequential stream
with the specified array as its data source [24]), Stream.of
(returns a sequential stream generated from one or multiple data
sources passed as arguments [10]), Stream.concat (returns
a new stream containing all the elements of two streams
passed as input [10]), java.util.Random.ints (returns
an IntStream of pseudorandomly chosen integers [25]),
Stream.empty (returns an empty sequential stream [10]) and
java.lang.CharSequence.chars (returns an IntStream

containing the integer representation of the char values from
a source string [10]). We are not aware of any other study
characterizing the source method from which streams generate.

Finding 1: Streams are mainly created from collections,
generators of integers, and arrays.

Source collection types. We detect a total of 185 different
source collection types, among which we summarize the ten

TABLE II: Most popular source collection types.

Source Collection Type Occurrences %

ArrayList 258 713 462 41.72
HashSet 29 330 326 4.73
Collections$SynchronizedSet 25 569 216 4.12
LinkedList 12 246 909 1.98
LinkedHashSet 7 730 718 1.25
Arrays$ArrayList 7 480 889 1.21
Collections$EmptyList 5 759 041 0.93
HashMap$EntrySet 5 687 645 0.92
Collections$SingletonList 5 466 774 0.88
Collections$UnmodifiableRandomAccessList 4 806 994 0.78

most popular ones in Table II. Our findings show that streams
are mainly generated from lists and sets. We are not aware of
related work reporting the specific collection types from which
streams are created. However, to some extent our results are
similar to the ones reported by Costa et al. [26] while studying
the use of collections in Java (10 986 projects analyzed).
They find that ArrayList, java.util.HashMap, HashSet,
java.util.LinkedList, java.util.LinkedHashMap

and java.util.LinkedHashSet, among others, are the
most popular Java collections.

Finding 2: Streams generated from collections are mostly
created from lists and sets.

Stream types. We find that streams of objects are the most
popular type of streams. 81.41% of the streams detected are
of type Stream, 18.54% of type IntStream, 0.05% of type
LongStream, and only 0.0011% are of type DoubleStream.
Our findings show that the most popular streams are those
whose elements are references to objects. As far as we are
aware, previous studies do not report the popularity of the
stream types used in the projects analyzed.

Finding 3: Object-based stream types are far more popular
than primitive-based stream types.

Characteristics of the data source. We characterize the
data source from which the stream is generated upon stream
creation. We find that most of the streams are created from
a data source having an encounter order (87.71%). This is
expected as most streams generate from lists and arrays (data
structures that typically preserve an index order). We find
that most of the data sources allow duplicates (72.13%),
which can also be explained by the fact that most of the
streams are generated from lists and arrays. Lastly, we find
that most of the streams are created from data sources not
having a sort order (85.29%), which are mutable (68.09%), and
which do not support concurrent modification (99.86%). While
Khatchadourian et al. [6] report that streams in the analyzed
projects are largely ordered, they mainly infer the ordering
implemented by the stream data source via static analysis. We
confirm this finding by detecting ordering constraints (i.e., the
stream data source has an encounter and/or a sort order to
be preserved) as reported at runtime by the spliterator upon
stream creation.

Our findings indicate that most of the streams detected



TABLE III: Distribution of the stream data-source size.

Size Range Occurrences %

0 51 585 754 13.02
[100, 101) 309 639 158 78.15
[101, 102) 29 085 769 7.34
[102, 103) 4 620 480 1.17
[103, 104) 557 893 0.14
[104, 105) 1 692 4·10-4

[105, 106) 34 1·10-5

[106, 107) 5 1·10-6

TABLE IV: Most popular intermediate operations.

Intermediate Operation Occurrences %

map 427 009 693 51.57
filter 227 938 406 27.53
mapToObj 77 898 391 9.41
flatMap 34 512 362 4.17
mapToInt 27 327 892 3.30
limit 12 697 146 1.53
mapToLong 6 264 703 0.76
sorted 5 275 399 0.64
skip 4 041 440 0.49
distinct 2 877 764 0.35

may not be parallelized straightforwardly. As explained in the
documentation of the Stream API, operations in the pipeline
typically run in parallel more efficiently in the absence of
ordering constraints [1].

Finding 4: Stream data sources often allow duplicates, have
ordering constraints, are mutable, and do not support

concurrent modification.

We were able to query the data-source size of 63.89% of
all detected streams. For the remaining ones, the exact size
was reported as unknown, which occurs when the data source
is not sized or the size cannot be computed [27].

Table III reports the distribution of the data-source size
(considering only data sources whose size could be successfully
obtained). We find that most of the data sources used to
generate streams contain a number of elements between 100

and 101. In this range, the most popular data-source sizes are
3 (23.88%), 2 (17.31%), 1 (13.13%), and 4 (10.21%). We also
find that 13.02% of all the data sources analyzed contain zero
elements upon creation. The maximum data-source size found
is 1 114 112. Overall, we found that streams often generate
from data sources containing few elements. To our knowledge,
no other study analyzes the data-source size of streams or the
characteristics reported at runtime by the spliterator associated
to the stream.

Finding 5: Stream data sources typically have few elements.

Intermediate operations. We detect the occurrence of
827 977 847 intermediate operations in total. We show the
ten most popular ones in Table IV. Our analysis shows that
intermediate operations used for mapping (65.04%, consider-
ing operations map, mapToObj, mapToInt, mapToLong, and
mapToDouble) and filtering (27.53%) are the most popular
ones. This finding is consistent with the results by Tanaka et

TABLE V: Most popular terminal operations.

Terminal Operation Occurrences %

collect 197 338 242 31.83
forEach 145 774 791 23.51
allMatch 68 072 088 10.98
findFirst 51 274 578 8.27
anyMatch 43 892 114 7.08
sum 38 716 266 6.24
findAny 38 505 248 6.21
reduce 9 720 348 1.57
toArray 7 555 733 1.22
count 6 033 536 0.97

al. [5], Khatchadourian et al. [6], and Nostas et al. [7] (obtained
at a much smaller scale), indicating that streams are mainly
used to perform MapReduce [28] style processing.

We find that both the sorted and the unordered interme-
diate operations (which respectively can introduce and remove
ordering constraints among the elements of a stream) are
barely used (0.64% and less than 0.001%, respectively). While
considering these two operations, we confirm that most of the
analyzed pipelines have ordering constraints due to the nature
of the stream data source or due to transformations through
the pipeline.

Khatchadourian et al. report that stateful operations are
rarely used. We confirm this observation at a much larger
scale, finding that stateless operations are by far more pop-
ular (96.99%). The exclusive use of stateless operations is
recommended as according to the documentation of the Stream
API, pipelines containing only stateless intermediate operations
can be processed in a single pass, whether sequential or
parallel, with minimal data buffering, potentially improving
performance [1].

Finding 6: Mapping and filtering are by far the most popular
intermediate operations.

Finding 7: Stateful intermediate operations are barely used.

Terminal operations. We detect the occurrence of
620 033 509 terminal operations in total and report the ten
most popular ones in Table V. Our results show that the most
used terminal operations are collect (31.83%) and forEach

(i.e., applies a given function to each data element in a stream
pipeline) (23.51%). While the former is key for map-reduce-
like data processing, the latter indicates that streams are also
used to process data iteratively and nondeterministically. This
finding confirms the results by Tanaka et al., Khatchadourian
et al, and Nostas et al. at a larger scale.

In addition, we find that deterministic terminal operations
are the most used (70.28%). In this context, our results are
consistent with the results reported by Khatchadourian et al. We
find that forEachOrdered (i.e., the ordered and deterministic
counterpart of forEach) is less popular (0.02%) than forEach

(23.51%), and that findFirst (an operation returning the
first element in the pipeline) is more popular (8.27%) than its
nondeterministic counterpart findAny (6.21%), which returns
any element in the pipeline.



TABLE VI: Distribution of the pipeline length.

Length Occurrences %

2 293 021 334 47.25
1 123 683 254 19.95
3 119 522 688 19.27
5 44 258 049 7.14
4 39 501 712 6.37
0 46 102 7·10-3

7 40 050 6·10-3

6 15 448 2·10-3

8 2 468 4·10-4

11 2 447 4·10-4

10 34 5·10-6

14 17 3·10-6

Finding 8: Map-reduce-like data reductions via collect
and iterative-style processing via forEach are the most

common terminal operations.

Finding 9: Deterministic terminal operations are more
popular than nondeterministic ones.

Execution modes. Among a total of 620 093 603 streams
detected, 620 033 509 were executed and 60 094 were not
executed (i.e., streams that are created but lack a terminal
operation). Among the streams executed, 99.66% were executed
sequentially. This finding confirms the results obtained on a
smaller scale by Khatchadourian et al. (34 projects and 1 038
streams analyzed, of which 13 were parallel) and Nostas et
al. (610 projects analyzed, among which the authors report that
in 23 at least a single parallel stream is created). Considering the
low usage of stateful operations in the analyzed stream pipelines
(as previously discussed), this finding may reveal potential
missed speedups that could be obtained by parallelizing stream
processing. Nonetheless, as pointed out by Lea et al. [4],
when deciding whether to parallelize a stream, it is crucial
to estimate if the sequential execution already exceeds a
minimum threshold, which—as Lea et al. propose—could be
measured in terms of execution time or the number of elements
processed. The idea is finding whether, despite the presence
of parallelization overheads, the parallel execution of a stream
can result in performance gains. According to our findings,
stream data sources typically contain few elements, therefore
only a small selection of projects processing large amount of
data may truly benefit from stream parallelization.

Finding 10: Parallel streams are not popular.

Lengths. Table VI reports, among all streams detected, the
distribution of their pipeline length. Our results show that
few operations are used in the projects analyzed, with an
average length of only 2.34. We also find that 46 102 streams
are created but no operation is called in their pipelines. This
finding indicates that pipeline composition involves mostly few
operations. To our knowledge, no previous study analyzes the
pipeline length.

Finding 11: Stream pipelines are typically composed of few
operations.

TABLE VII: Most popular collectors.

Collector Occurrences %

N/A 422 695 267 68.17
Collectors.toList 146 091 282 23.56
Collectors.toSet 15 855 229 2.56
Collectors.toCollection 15 550 665 2.51
Collectors.toMap 6 819 658 1.10
Collectors.joining 5 830 648 0.94
Collectors.collectingAndThen 5 495 747 0.88
Collectors.groupingBy 987 487 0.15
Collectors.counting 553 012 0.08
Collectors.reducing 121 687 0.02

Collectors. As shown in Table V, we detected a total of
197 338 242 invocations to collect, used to perform mutable
reductions. Table VII shows the ten most popular collectors
used during a mutable reduction (if any). Note that we identify
the collector with the method used to obtain it (from class
Collector). Among the executed streams, 68.17% do not
perform a reduction using a collector (shown in Table VII
as N/A). Our outcome is consistent with the results reported
by Khatchadourian et al. and Nostas et al. in finding that
reductions via collect mostly produce lists. Also, we confirm
the observation done by both studies that concurrent reductions
(e.g., groupingByConcurrent) are rarely used (less than
0.001%). This finding shows that despite the Stream API offers
a variety of collectors, streams are mostly used to perform
simple non-concurrent reductions whose results are mainly
collected in lists and sets.

Finding 12: Collectors that collect elements into lists and
sets are the most used.

Stream result types. We detected a total of 97 different
stream result types. Table VIII summarizes the 10 most popular
stream result types found. We find that ArrayList is the
most popular data structure used to store the result of a
stream (23.96%) while 23.53% of the executed streams do
not return any result (e.g., streams performing the forEach

and forEachOrdered terminal operations, which are void

methods). This is expected, given the popularity of reductions
collecting the results in lists as well as of forEach-like
terminal operations. We are not aware of any related work
characterizing stream result types.

Finding 13: Lists are the most popular data structure used to
store the output of a stream.

Summary and discussion. Our findings can be summarized
as follows. Streams are mostly used for basic data processing,
mainly for the manipulation of lists containing few elements,
using pipelines composed of few intermediate operations
(mainly stateless ones), and typically performing simple data
reductions whose output is also commonly stored in lists. We
also find that parallel streams and concurrent data reductions
are rarely used, that streams are often created from mutable
data sources that do not support concurrent modification, and
have ordering constraints. Finally, we find that map-reduce-
style processing is popular via pipelines in the form of map-



TABLE VIII: Most popular stream result types.

Stream Result Type Occurrences %

java.util.ArrayList 148 567 911 23.96
void 145 918 994 23.53
boolean 112 159 247 18.09
java.util.Optional 99 032 395 15.97
int 29 961 760 4.83
java.util.HashSet 16 333 376 2.63
java.util.HashMap 15 464 414 2.49
int[] 9 576 981 1.54
java.lang.String 9 506 464 1.53
Object[] 8 745 210 1.41

filter-collect patterns. However, streams are also used for
simple iterative-style collection processing via the execution
of pipelines relying on forEach-like operations.

Our findings advance the understanding of stream processing
on the JVM. First, our results can be used as a feedback to the
community developing the Java class library to prioritize the
optimization both of features of the Stream API according to
their popularity and of related supporting features belonging to
other Java APIs. Second, our results can be used by IDE
and tool builders to understand which kind of support is
required to help users make better decisions while using
streams. In particular, our study highlights that parallel streams
are not widely used. As a result, tools guiding an efficient
parallelization of streams may help developers potentially
improve the performance of their Java applications, particularly
of those processing large datasets. Third, our findings can
be used by developers in the search for missed opportunities
to enhance data processing in Java. Indeed, our results show
that the projects analyzed rarely make use of complex stream
processing that truly benefits from the richness, versatility,
and fluency of the Stream API. For instance, the use of
parallel streams, the removal of ordering constraints (e.g., via
unordered), as well as the use of concurrent collectors are
not popular, but a careful selection and use of such features
can make a difference in the goal of leveraging parallel data
processing in Java. Finally, our findings can help educators
training Java developers identify unexploited features of the
Stream API that can be emphasized in learning processes, such
that practitioners are aware of means to enable more efficient
data processing on the JVM.

V. LIMITATIONS

In this section, we discuss the main limitations of our work
and outline our future work.

Like any large-scale study, our findings depend on the
analyzed projects, which may not be representative of the
general use of Java streams. Nevertheless, the analyzed projects
are diverse in aspects such as domain, size, and popularity.

Our study targets only GitHub. Nonetheless, it is currently
the largest source-code-hosting facility, having more than 73
millions of users and hosting more than 200 million software
projects [9]. We plan to expand the analysis to target other
software repositories, such as GitLab [29] or BitBucket [30].

Our study uses Java version 8 (the version in which the
Stream API was introduced). Projects relying on newer versions

of Java are not included in our analysis and we do not consider
the study of features of the Stream API introduced since Java
9. We plan to expand our study using the latest long long-term
support release of Java.

Our study only considers projects that can be build via
maven. We plan to use other build systems such as Ant [31]
or Gradle [32] to target additional projects in further studies.

The timeframe selected for our study limits the number of
projects that were analyzed. On the other hand, the chosen
timeframe enables us to analyze current practices in the
use of streams (excluding projects that are old, obsolete, or
not maintained and which could bias the study), while still
considering a large number of projects. As future work, we
consider an extension of our analysis to cover more recently
updated projects.

The analysis timeout may prevent some long-running projects
to be analyzed. However, the choice of 1 hour as the analysis
timeout is justified by the need for preventing non-verified
software to uncontrollably consume our computing resources.

In comparison to previous studies [5]–[7] that mainly use
manual code inspection or static analysis to analyze the code
in a project, an important limitation of our study is that it only
targets source code exercised by unit tests. Such code may not
be representative for a real usage scenario of an application
in production. However, previous work [8], [21] has shown
that massively applying DPAs on workloads exercised by unit
tests can provide useful information, highlight patterns, and
derive statistics. We note that we execute testing code because
we aim at running DPAs on a multitude of software projects
automatically. As JUnit tests can be automatically executed by
the build system via simple commands (e.g., mvn test), they
make large-scale dynamic analysis possible.

Finally, our study considers streams that may be executed
within test-harness classes. We plan to detect such kind of
streams to avoid targeting stream executions related to warm-
up phases. We also consider as future work the separate analysis
of streams executed in application code, testing code, and in
the Java class library.

VI. RELATED WORK

In this section, we review work related to our approach.
First, we compare our work to other studies focused on the
use of streams. Next, we review studies targeting functional
programing in Java. Finally, we review work addressing the
optimization of streams.

A. Studies on the Use of Java Streams

To the best of our knowledge, there are three studies
examining the use of Java streams, all of which rely on static
analysis and manual code inspection.

Tanaka et al. [5] mine 100 software projects to study the
use of lambdas, streams, and the Optional class. They report
that developers using such idioms mainly aim at improving
performance and producing short, clear, and readable code.
Regarding streams, they find that the most popular operations
are map, filter, and collect. Khatchadourian et al. [6]



examine 34 projects to specifically study the use of streams
in Java. The authors report several findings, including that
parallel streams are not popular, that pipelines often have
ordering constraints, and that streams are mostly used to iterate
over collections and to perform data reductions. Finally, Nostas
et al. [7] study the use of streams in 610 projects. Their work
is a partial replication of the study of Khatchadourian et al. by
considering a larger number of projects. The authors mainly
confirm the results obtained by Khatchadourian et al. and find
that streams are mostly used in frameworks, libraries, and tools.

In comparison to the aforementioned related work, our study
is conducted at a much larger scale thanks to the use of a
fully automated approach that avoids manual intervention.
Moreover, we characterize runtime information that related
work overlooks, since is mainly based on static analysis
techniques that cannot collect dynamic metrics. In addition,
our study is the first to report the popularity of source methods,
source collection types, stream types, pipeline lengths, and
stream result types. Lastly, as far as we are aware, we are
the first ones to analyze the characteristics of stream data
sources as collected at runtime, including their size, ordering
constraints, duplicate allowance, mutability, and support for
concurrent modification.

B. Studies on Functional Programming in Java

Some authors have studied functional programming in Java,
in particular the use of lambdas.

Tsantalis et al. [33] study the use of lambdas to refactor
duplicated code to benefit from behavior parameterization [34].
They find that lambdas are highly effective to avoid duplicated
code. The study of Tsantalis et al. focuses solely on lambdas,
disregarding streams. Mazinanian et al. [35] mine 241 software
repositories containing over 100 000 lambdas, and survey 97
Java developers to understand how they are using lambdas.
They find that developers are increasingly using lambdas to
replace anonymous classes and for behavior parameterization.
However, the study of Mazinanian et al. does not focus on
streams. Nielebock et al. [36] study the use of lambdas in
2 923 projects implemented in C#, C++, and Java. They locate
several lambdas in both application and testing code. Similarly
to our finding showing that parallel streams are not popular,
the authors find that developers tend to avoid using lambdas
within concurrent code. Also the study of Nielebock et al. does
not consider streams.

C. Optimization of Java Streams

Some authors have addressed the optimization of streams.
Ishizaki et al. [37] modify the IBM J9 JVM [38] and

the Testarossa [39] compiler to translate invocations to
the IntStream.forEach terminal operation of a parallel
stream into optimized GPU code. Hayashi et al. [40] extend
such work, proposing a supervised machine-learning approach
generating heuristics that the runtime can use to select between
a CPU or a GPU to efficiently execute parallel streams
invoking IntStream.forEach. Khatchadourian et al. [41],
[42] introduce an Eclipse plugin helping developers better code

streams. The plugin evaluates whether it would be safe and
potentially advantageous to restructure a stream pipeline to
improve performance. To this end, the plugin infers how the
execution of a stream would take place by analyzing it mainly
via static analysis techniques [43], [44]. Finally, Møller et
al. [45] present StreamLiner, a tool that translates the bytecode
generated upon the compilation of sequential streams into
bytecode representing more efficient imperative-style code.

While supporting the optimization of streams, the afore-
mentioned tools are not designed for characterizing stream
processing in the wild.

VII. CONCLUSIONS

In this paper, we present the first large-scale empirical study
on the use of Java streams. In addition to the large scale, our
study is the first one to consider dynamic characteristics of
stream processing. We target 1 808 415 open-source software
projects publicly available on GitHub, among which we find
132 211 projects that use the Stream API. Our study considers
a total of 620 033 509 streams.

To conduct our study, we develop Stream-Analyzer, a
novel dynamic analysis for collecting runtime information
and key metrics that enable the fine-grained characterization
of sequential and parallel stream processing on the JVM.
We massively apply Stream-Analyzer using a fully automated
approach, relying on a distributed infrastructure that enables
mining applications hosted on GitHub.

The results of our study confirm the findings of recent efforts
focused on studying the use of Java streams [5]–[7] at a much
larger scale, and complementarily provide new insights about
the use of the Stream API thanks to the collection of dynamic
metrics unique to streams.

As part of our future work, we aim at extending our analysis
by considering projects hosted in large-scale repositories other
than GitHub, a larger timeframe, a newer Java version, and
other build systems, as discussed in Sec. V. We also plan to
identify projects showing suboptimal stream processing and
find ways to optimize them. Finally, we plan to release Stream-
Analyzer as open-source software to facilitate the replicability
of our results.
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