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Abstract—The Java Stream API increases developer produc-
tivity and greatly simplifies exploiting parallel computation by
providing a high-level abstraction on top of complex data pro-
cessing, parallelization, and synchronization algorithms. However,
the usage of the Java Stream API often incurs significant runtime
overhead. Method inlining and the automated translation of code
using the Java Stream API into imperative code using loops can
reduce such overhead; however, existing approaches and tools
are applicable only to sequential stream pipelines, leaving the
optimization of parallel streams an open issue. We bridge this
gap by presenting a novel method to exploit high-level static
analysis to characterize stream pipelines, detect parallel streams,
and apply transformations removing the abstraction overhead.
We evaluate our method on a set of benchmarks, showing that
our approach significantly reduces execution time and memory
allocation.

Index Terms—Java, Parallel Streams, Functional Program-
ming, Program Optimization, Bytecode Transformation

I. INTRODUCTION

Nowadays, complex computer systems are gaining increasing
interest in the research and industrial communities and are used
in an ever-expanding set of applications that includes, e.g., big-
data processing, software architectures, software engineering,
and safety-critical systems. In such complex systems, perfor-
mance is crucial, and hence it is essential to develop code
that fully exploits modern multicore architectures. However,
parallelizing code while achieving good maintainability and
scalability is challenging and entails high complexity for the
developer. For this reason, several programming languages
implement simple declarative programming models that allow
one to easily parallelize sequential computations.

This paper focuses on one of such models, the Java Stream
API [21] (henceforth called Stream API for short), introduced
in Java 8. The API mitigates the aforementioned issues by
enabling functional-style operations to process streams of
elements. In particular, the Stream API allows the developer
to declaratively define a pipeline of operations that can be
executed either sequentially or in parallel. By invoking a single
method, the pipeline execution is automatically parallelized
without any intervention or extra specifications required by
the developer. Developers can focus on the intended behavior,
easily exploiting parallel computations without having to deal
with complex error-prone mechanisms related, e.g., to load
balancing and synchronization.

However, despite the benefits of this abstraction, several
studies show that functional programming in Java using the
Stream API suffers from significant performance degradation

compared with its imperative counterpart [2], [9], [10]. As
the Java bytecode does not support function types, lambda
expressions [24] (i.e., anonymous functions often used to
specify stream operations) are treated as interfaces with a
single abstract method [11], leading to many virtual method
calls. These virtual calls may prevent optimizations performed
by the Just-In-Time (JIT) compiler. To maintain the benefits of
functional programming without sacrificing performance, it is
crucial to better optimize programs that use the Stream API.

A prominent technique for removing the abstraction overhead
of the Stream API is the automatic translation of pipelines into
loops. Such a technique, based on bytecode transformations
and method inlining, is particularly suitable for streams and has
shown significant performance improvements [10], [14], [23].
However, to the best of our knowledge, existing strategies work
only with sequential streams. Parallel streams are either ignored
or converted to sequential ones, resulting in missed optimization
opportunities. As a result, parallel stream processing may be
suboptimal, hence lowering the efficiency of modern complex
computer systems using parallel streams.

To address this issue, we propose a novel approach to
improve the performance of programs that use parallel streams
by automatically transforming them into imperative code, hence
removing the abstraction overhead of the Stream API. Our ap-
proach relies on static analysis and on bytecode transformations.
Contrary to related work, our approach considers the semantics
of individual stream operations and characterizes stream
pipelines. This allows us to exploit stream- and operation-
attributes to determine operations that can be safely parallelized,
as well as those that need synchronization.

In particular, we convert parallel streams into fork-join tasks,
reducing runtime overhead, and we efficiently manipulate
stateful and short-circuiting operations to lower contention
and synchronization overheads. Our new transformations also
enable the use of existing techniques that remove the abstraction
overhead, previously only applicable to sequential streams, to
further optimize the generated code. Our technique allows
better exploitation of parallelism without any support from
the developer and without introducing any change in the API,
improving the efficiency of applications using parallel streams
in terms of execution time and memory allocation.

Our work makes the following contributions.
1) We propose a novel method that performs static bytecode

analysis to detect, characterize, and transform parallel
Java streams into imperative code, removing the abstrac-
tion overhead (Section IV).



2) We present several optimizations for the transformation
of stateful and short-circuiting operations to reduce
synchronization and contention (Section V).

3) We evaluate our approach on a set of benchmarks,
showing that the resulting code significantly reduces
execution time and memory allocation w.r.t. parallel
stream execution. In particular, our approach achieves
an average execution-time speedup of 6.02× (geometric
mean) and a maximum one of 201.03×. Moreover, our
method yields an average memory reduction of 2.07×
(geometric mean), up to a factor of 3.9× (Section VI).

We complement the paper with an overview on the Stream
API (Section II), a motivating example (Section III), and a com-
parison with related work (Section VII). Finally, Section VIII
concludes.

II. BACKGROUND: THE STREAM API
The Stream API [13] offers a functional interface to manipu-

late elements via a pipeline of operations. Such operations can
be divided into two categories: intermediate operations either
change stream attributes or return a new stream to be further
processed by later operations, and terminal operations cause
the execution of a pipeline, producing a result or side-effects. A
stream pipeline starts with a method that creates the stream from
a data source (such as a Collection, an array, or a generator
function), potentially contains intermediate operations, and
ends with a terminal operation. Intermediate operations can be
further divided into stateless if they retain no state, or stateful
if they incorporate a state that is updated when processing
elements. For example, map and filter are stateless operations,
while distinct and skip are stateful operations.1 Intermediate
operations that produce finite streams from infinite data sources
and terminal operations that may terminate in finite time from
infinite input are classified as short-circuiting. Two examples
of short-circuiting operations are limit and anyMatch.

Streams can be classified as either finite or infinite, ordered
or unordered (based on the presence or absence of an encounter
order), and sequential or parallel. Given the operations
composing the stream pipeline, it is possible to classify the
stream and execute the pipeline.

One main advantage of the Stream API is that it greatly
facilitates the parallelization of element processing just by
adding a single parallel operation that classifies the stream
as parallel. Internally, through a divide-and-conquer approach,
the Stream API splits input data of parallel streams into parts
and orchestrates ForkJoinTask [16] instances that process
each part in parallel. Such task instances are automatically
executed by the common ForkJoinPool instance [15], which
is statically constructed by the Java Class Library, requiring
no user intervention. The configuration of the API is not under
user control.

1All operations on streams reported in the paper correspond to methods de-
fined in the Stream, IntStream, LongStream, and DoubleStream interfaces
of the java.util.stream package. A complete classification of operations in
terms of intermediate/terminal, stateless/stateful, and short-circuiting can be
found in the documentation [21]. Using a functional-language notation, we
use “operation” as a synonym for “method”.

1 int sumOfSquaresEven(int[] source) {
2
3 return IntStream.of(source)
4 .unordered()
5 .parallel()
6 .filter(
7 x -> x % 2 == 0
8 )
9 .map(x -> x * x)

10 .sum();
11
12 }

Fig. 1. Parallel, unordered stream computing the sum of squares of even
numbers.

III. MOTIVATING EXAMPLE

In this section, we report an example of parallel stream and
we illustrate the corresponding imperative code produced by
our approach.

The example method sumOfSquaresEven (whose sequen-
tial ordered version has been originally proposed in a paper by
Biboudis et al. [2]) shown in Figure 1 uses a parallel, unordered
stream, computing the sum of squares of even numbers stored
in the array source provided as a parameter. The IntStream.of
method (line 3) creates a new stream that has the source array
as its data source. Lines 4 and 5 define the stream as unordered
and parallel, respectively, using the homonymous operations.
The stateless filter operation (lines 6–8) selects only even
numbers, while the stateless map operation (line 9) computes
the squares. The terminal operation sum (line 10) sums the
squares, yielding the final result. Since the stream is parallel,
the Stream API automatically parallelizes the computation
by splitting the source array into several parts assigned to
different fork-join tasks that are automatically managed by a
fork-join pool.

Our approach aims at transforming the parallel stream in
Figure 1 into a corresponding imperative code. Consider the
code in Figure 2, showing a partial transformation of the code
in Figure 1. The sumOfSquaresEven method in Figure 2
does not contain a parallel stream, but instead the instantiation
of an inner class called SumOfSquaresEvenTask (line 3)
that extends ForkJoinTask, and an invocation to its compute
method (line 24). Such a method, omitted for brevity, splits
the data source into parts, creates new tasks, and invokes the
computePart method (lines 7–14) on each task. Since the data
source of the original stream is an array, splitting is performed
by providing the starting and ending indexes of the part (called
low and high in the code) as parameters to computePart
(line 7). In case of data sources that do not support direct
indexing, computePart may take e.g. a Spliterator2 instance
as parameter. The computePart method creates and executes
a sequential stream composed of the same operations of the
original parallel stream, but considering only the part assigned

2A Spliterator [17] is an object that allows traversing (either individually
or sequentially in bulk) and partitioning elements of a source. Such as source
can be, for example, an array, a Collection, or a generator function.



1 int sumOfSquaresEven(int[] source) {
2
3 class SumOfSquaresEvenTask extends ForkJoinTask<Integer> {
4
5 // constructor, compute, and other methods are omitted
6
7 int computePart(int low, int high) {
8
9 return Arrays.stream(source, low, high)

10 .filter(x -> x % 2 == 0)
11 .map(x -> x * x)
12 .sum();
13
14 }
15
16 int merge(int left, int right) {
17
18 return left + right;
19
20 }
21
22 }
23
24 return new SumOfSquaresEvenTask().compute();
25 }

Fig. 2. Code of Figure 1 after transformation, using sequential streams executed in parallel via ForkJoinTask instances.

to the task and providing a partial result (line 9–12). Finally,
the merge method (line 16), called by compute, aggregates
partial results coming from different parts to obtain the final
sum.

Since the computePart method contains a sequential stream,
existing techniques can be applied to convert such a stream
into a single loop, hence completely removing the Stream API
abstraction. Such techniques could not have been applied to
the stream in Figure 1, as it is parallel. Our work makes it
possible to automatically translate code containing parallel
streams (Figure 1) into equivalent code using only sequential
streams that are executed in parallel in fork-join tasks (Figure 2),
as we will explain in the next section.

IV. METHODOLOGY

In this section, we present our approach to transform parallel
streams. First, we report the base case of our method in
Section IV-A. Then, in Section IV-B we explain how we support
stateful and short-circuiting operations.

A. Base Case: Sequence of Stateless Operations

Our approach is based on static analysis and bytecode
transformations. Differently from existing techniques, the
proposed method operates at a higher abstraction level, con-
sidering the semantics of stream operations and performing a
characterization of the stream pipelines.

We focus on stream pipelines that are created and executed
within the same method, a strategy also used by similar tech-
niques focusing on sequential streams [14]. This is motivated
by the fact that Java streams are rarely returned or passed as
parameters, as shown by related work [14]; hence, they usually
span a single method. As a consequence, our approach cannot

fully transform the flatMap operation (limited to the case where
the function passed as input returns a parallel stream).

In addition, our method focuses on parallel unordered
streams, since the most significant speedups can be obtained
for such streams. Indeed, without ordering constraints, it
is possible to fully exploit parallel out-of-order execution,
removing buffering3 to achieve better performance. As it will
be later explained in Section VII, related work [7], [8] proposes
approaches to identify sequential streams that can be safely
converted to parallel unordered streams. Such streams can
benefit from our method, hence expanding the applicability of
our technique. Furthermore, the Stream API documentation
recommends either to use unordered streams or to avoid the
usage of parallel ordered ones, if certain operations (such
as limit) are part of the pipeline, since synchronization and
buffering overheads may be excessive [19], [21].

In the following text, we detail our approach to identify,
characterize, and optimize parallel stream pipelines that only
contain stateless, non-short-circuiting operations. Figure 3
illustrates our approach. In the base case considered here,
Step 3 (i.e., transformation of stateful and short-circuiting
operations) has no effect and will be skipped. We detail
Step 3 in Section IV-B, which enables cases where stateful
and short-circuiting operations appear in the stream pipeline.
Our methodology is applied to the bytecode of Java methods
that create and execute at least one stream.

Step 1 identifies and characterizes the pipeline of each
stream. We use the approach proposed by Møller at al. [14],
i.e., an off-the-shelf pointer analysis [14], [25], to identify
bytecode instructions that belong to different pipelines and

3In this paper, “buffering” refers to the allocation of temporary intermediate
data structures to store elements between computational steps.
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Fig. 3. Overview of the proposed parallel stream optimization method.

need to be processed separately. Then, by further analyzing
the bytecode instructions, we characterize each pipeline by
analyzing each stage of the pipeline and tracking changes in
the attributes of the stream, starting with the method that creates
it (e.g., IntStream.of() or Arrays.stream()) and ending with
the terminal operation. For example, a pipeline that contains a
parallel operation not followed by a sequential operation is
marked as parallel. By analyzing the method that creates the
stream and the terminal operation, we extract type information
about the stream itself, i.e., the input/output types and the data
source. Step 2 uses the stream characterization of Step 1 to
detect parallel unordered streams, which can be optimized by
our approach.

Step 4 uses the input/output types of the stream identified
in Step 1 to convert a parallel stream into a sequential stream
processed by a ForkJoinTask. Considering our motivating
example, this step converts the parallel stream of Figure 1 into
the code of Figure 2, as detailed in Section III. In particular,
we move the bytecode instructions that form the pipeline from
the original method to the computePart method of the newly
created task class. In the original method, we substitute the
parallel stream with an instantiation of a new task and an
invocation of its compute method (Figure 2, line 24).

Finally, Step 5 resorts to existing techniques [3], [14]
to optimize sequential streams, providing the computePart
method of the new task class as input (which contains a
sequential stream). Hence, we obtain a single loop, completely
removing the abstraction of the Stream API.

While our approach removes the abstraction overhead of
using parallel streams, the resulting code uses the same number
of fork-join tasks that would be created using the Stream
API. Our approach does not alter task granularity, i.e., we use
the same logic implemented in the Stream API to determine
whether to create new fork-join tasks or to sequentially process
a part. In addition, we do not alter the way in which the
ForkJoinPool of the Stream API handles parallelism.

B. Stateful and Short-Circuiting Operations

Here, we detail Step 3, i.e., how stateful and short-circuiting
operations are manipulated to make them suitable to our tech-
nique. Even though we present distinct and limit as examples of
stateful and short-circuiting operations, respectively, our method
also applies to other operations, e.g., skip. In the following text,
we illustrate our approach focusing on IntStreams (and hence
int operations and int primitive-type specialization classes, such

as IntPredicate) to simplify code and explanation. However,
our method can be applied to any primitive-type or object
stream with the appropriate simple type modifications.

1) Stateful operations: Stateful operations cannot be di-
rectly moved into fork-join tasks while ensuring correctness.
For example, considering the distinct operation (that removes
duplicate stream elements), placing it directly into the com-
putePart method in Figure 2 would lead to different elements
only within the given part, not across the whole data source.
Hence, the global output may contain the same element more
than once, violating the semantics of the distinct operation.
Moreover, it is not possible to perform distinct in the merge
method, because elements may have been manipulated and
aggregated by operations that follow distinct in the stream
pipeline. For example, the merge method that corresponds to
the sum terminal operation (shown in Figure 2 at lines 16–20)
can access only two aggregated results (called left and right)
and cannot detect and consider only the distinct elements that
compose such aggregated results.

Our solution is to exploit a common synchronized state
shared among the different tasks. We observe that every stateful
operation defined in the Stream API [18] (except sorted) can
be considered as a specialization of a filter operation. Hence,
we transform stateful operations to stateless filter operations,
providing them dedicated predicates in charge of managing
the shared state before transforming the pipeline in Step 4.
This manipulation preserves the semantics of the transformed
stateful operations and hence guarantees the correctness of the
result of the computation [18]. Moreover, our manipulation
does not introduce the need for data buffering, hence avoiding
unnecessary memory allocations.

Figure 4 shows how the distinct operation at line 6 can
be translated into a stateless filter (line 17) whose predicate
is returned by the createDistinctIntPredicate method at
line 12 (implemented in Section V-A) and checks whether
the provided element has already been encountered. Figure 5
reports the transformed pipeline shown in Figure 4, after Step 4.
The createDistinctIntPredicate method invocation (line 2) is
inserted before the definition of the fork-join task (lines 5–18)
and hence all the fork-join task instances use the same predicate
instance (line 13). Therefore, the same thread-safe Set instance
(Figure 7, line 5) is used for checking for duplicates when
executing the parallel stream.

2) Short-circuiting operations: In a concurrent context,
short-circuiting operations need to be handled with care. For



1 // Original pipeline
2
3 IntStream.of(source)
4 .unordered()
5 .parallel()
6 .distinct()
7 .sum();
8
9 // Transformed pipeline (step 3)

10
11 IntPredicate distinctPredicate =
12 createDistinctIntPredicate();
13
14 IntStream.of(source)
15 .unordered()
16 .parallel()
17 .filter(distinctPredicate)
18 .sum();

Fig. 4. Transformation of a stateful distinct operation to a stateless filter
operation whose predicate manages a shared state.

1 IntPredicate distinctPredicate =
2 createDistinctIntPredicate();
3
4 class SumOfDistinctTask
5 extends ForkJoinTask<Integer> {
6
7 // Constructor, compute, merge,
8 // and other methods are omitted
9

10 int computePart(int low, int high) {
11
12 return Arrays.stream(source, low, high)
13 .filter(distinctPredicate)
14 .sum();
15
16 }
17
18 }
19
20 new SumOfDistinctTask().compute();

Fig. 5. Transformed pipeline of Figure 4 after Step 4.

example, considering the limit(K) operation (that filters the first
K elements), an ideal implementation would process only K
elements, avoiding unnecessary computations. In a concurrent
setting, we need to prevent the creation and submission of
additional tasks and interrupt the concurrent processing of the
different parts.

Our approach solves these issues as follows. We replace
short-circuiting intermediate operations with a filter, and short-
circuiting terminal operations with a mutable reduction, i.e.,
collect. While filter takes a Predicate as input, collect takes
a Collector. The predicate or collector throws a special
ShortCircuitingException if element processing should be
aborted due to short-circuiting. Indeed, since streams do not
provide any way to stop a pipeline operation once it has started,
an exception is able to break the normal control flow. Each
task is able to catch the ShortCircuitingException and either
cancel ongoing computations or send a signal to the other
tasks to prevent the creation of additional parts. In case of

1 // Original pipeline
2
3 IntStream.of(source)
4 .unordered()
5 .parallel()
6 .limit(K)
7 .sum();
8
9 // Transformed pipeline (step 3)

10
11 IntPredicate limitPredicate =
12 createLimitIntPredicate(K);
13
14 IntStream.of(source)
15 .unordered()
16 .parallel()
17 .filter(limitPredicate)
18 .sum();

Fig. 6. Transformation of a stateful short-circuiting limit operation to a stateless
filter operation.

short-circuiting, stateful intermediate operations, the Predicate
provided to filter is used to both handle short-circuiting and
manage a shared state.

Figure 6 outlines our approach in the example of limit(K),
a short-circuiting, stateful intermediate operation. The limit
operation at line 6 is transformed into a filter operation (line 17),
which takes a Predicate as input (provided by method cre-
ateLimitIntPredicate(K) at line 12 and whose implementation
exploits the data structure described in Section V-B). Such a
Predicate either returns true or short-circuits the computation
by throwing a ShortCircuitingException instead of returning
false (and filtering only the single element currently being
processed).

V. IMPLEMENTATION

This section details our techniques to reduce synchronization
and contention. First, Section V-A provides implementation
details of the createDistinctIntPredicate method (introduced
in Section IV-B for transforming the distinct operation).
Then, Section V-B provides a high-level explanation of the
data structure internally used by the predicate returned by
createLimitIntPredicate (used for transforming the limit
operation). Due to lack of space, we do not provide the
detailed Java implementation of such a data structure, of the
createLimitIntPredicate method, and of the code that handles
the ShortCircuitingException.

A. distinct()

The implementation of the distinct operation in the
Stream API (OpenJDK [20]) uses a ConcurrentHashMap<T,
Boolean> (where T is the type of the elements). In particular,
the implementation uses the putIfAbsent method defined
in ConcurrentHashMap to keep track of the encountered
elements, i.e., to determine whether one element must be ex-
cluded because a corresponding equal element has already been
encountered. However, this approach can lead to performance
degradation due to synchronization in putIfAbsent.



1 static IntPredicate createDistinctIntPredicate() {
2
3 // The thread-safe seenElements Set instance is shared among
4 // all the tasks associated to the same stream pipeline
5 Set<Integer> seenElements = ConcurrentHashMap.newKeySet();
6
7 return element -> {
8
9 if (seenElements.contains(element)) {

10 return false;
11 }
12
13 return seenElements.add(element);
14
15 };
16 }

Fig. 7. Factory method to create filter predicates that correspond to the distinct operation.
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Fig. 8. Counter data structure exploiting N atomic variables to reduce contention. K is the value of the counter, T is the number of threads that access the
structure, and S is a parameter that defines the number of nodes per thread. In the figure, T = S = 3.

As shown in Figure 7, our implementation of the createDis-
tinctIntPredicate method mitigates this issue by relying on a
concurrent Set backed by a ConcurrentHashMap4 (line 5). To
determine whether an element is already in the set, we use the
pattern shown in lines 9–13. Since checking whether an element
is in the set does not require synchronization (Set.contains
at line 9 internally uses ConcurrentHashMap.get, a retrieval
operation that does not entail locking), threads do not block,
significantly speeding up the execution if several equal elements
are provided. If the item is not already in the set, the thread-
safe Set.add (line 13) adds it and returns a boolean indicating
whether the the element has been added.

B. limit(K)

The implementation of the limit(K) operation in the Stream
API (OpenJDK) relies on buffering and works as follows. The
operations in the pipeline that precede limit are executed on
each element; the resulting elements are placed into a fixed-
sized buffer. Then, the limit(K) operation processes elements
from such buffer, decrementing an atomic counter (initialized
with the value K) until it reaches zero. In this way, the counter
can be decremented by a number corresponding to the buffer
size.

4The Java Class Library does not provide a ConcurrentHashSet class. For
this reason, we use the keyset of a ConcurrentHashMap.

Our approach aims at exploiting parallel computation as
much as possible, avoiding buffering, and creating a single
entirely parallelizable pipeline suitable for method inlining.
This design choice forces the decrementing operation on the
shared atomic counter to be executed for each processed
element rather than for each processed buffered sequence, i.e.,
the counter has to be decremented (by 1) for each processed
element. Such an approach could be naively implemented
with a single, shared AtomicLong counter. However, although
such a solution would work correctly, it may result in poor
performance due to high contention on the shared counter.

To mitigate this issue, the predicate returned by the create-
LimitIntPredicate method relies on a dedicated data structure
representing a concurrent counter that starts with an initial value
K and that can be only decremented until zero. Internally, such
a counter encapsulates multiple AtomicLong variables, thus
reducing contention. In particular, our data structure, whose
conceptual high-level view is shown in Figure 8, is composed of
a circular linked list of N = T ·S nodes, where T is the number
of threads that access the structure and S is a parameter that
defines the number of nodes per thread (in the figure, T = 3
and S = 3). Each node encapsulates an AtomicLong counter
with a initial value of K/N . If K is not multiple of N , the
remainder is distributed among the first counters. When the
i-th thread (i ∈ [0, T − 1]) accesses the structure for the first



time, it is assigned a starting node at position i · S, such that
the starting positions are well distributed among the list.

When a certain thread needs to determine whether the global
counter can be decremented, it searches for an AtomicLong
whose value is greater than zero, starting from its starting
node and traversing the list. If a matching AtomicLong can
be found, the thread decrements it and marks it as its new
starting node to speed up further list traversals (i.e., skipping
counters that are known to be zero). Otherwise, if no positive
counter is present, the data structure is marked as exhausted
and a ShortCircuitingException is thrown.

Such an approach reduces contention in the early execution
stages by evenly distributing threads among the list. As a
consequence, different threads access different counters and do
not need to block, saving execution time. Contention becomes
significant only when there are few local counters that are
greater than zero and multiple threads try to access them
concurrently. List traversal can be efficiently implemented by
checking whether an AtomicLong is positive before atomically
decrementing it and comparing it with zero (i.e., performing a
first check that does not execute any expensive and possibly
repeated compare-and-swap operation).

The value of the parameter S is a compromise between
memory allocation and contention (and hence execution time).
In particular, memory allocation is proportional to S (since
higher values of S lead to the allocation of more nodes) while
contention is inversely proportional to S (since more threads try
to access the same node and require synchronization). A value
of S could be computed as a function of T and K. However,
an optimal value of S would consider several other factors,
such as the workload, the data source, level of parallelism,
and task granularity. We have experimentally determined that
a value S = 6 leads to a reasonable memory consumption and
contention. A more precise estimation of an optimal value of
S is left as future work.

VI. EVALUATION

In this section, we evaluate our approach in terms of
execution-time speedups and memory savings w.r.t. the Stream
API . We first present the evaluation settings (Section VI-A),
then we discuss the benefits of our approach in terms of execu-
tion time (Section VI-B) and memory savings (Section VI-C).

A. Evaluation Settings

We evaluate an implementation of our approach that employs
Streamliner [14] in Step 5 (see Figure 3), a state-of-the-
art tool to optimize sequential streams through bytecode
transformations. We evaluate our method on benchmarks
composed of different stream pipelines, which were first
presented by Biboudis et al. [2] and later extended by Møller et
al [14]. The benchmark suite has been used to evaluate related
approaches, particularly Strymonas and Streamliner.

We evaluate four different versions of each benchmark:
(1) using parallel streams and applying our method to remove
the abstraction of the Stream API (called StreamParallelOpt);
(2) using parallel streams (called StreamParallel); (3) using

sequential streams and applying Streamliner to remove the
abstraction of the Stream API (called StreamSequentialOpt);
(4) using sequential streams (called StreamSequential).
Comparing StreamParallelOpt with StreamParallel allows
to evaluate our method, i.e., determining the improvement
obtained by removing the abstraction of parallel streams.
Comparing our approach with StreamSequential and Stream-
SequentialOpt allow verifying that the parallel optimized
version resulting from the proposed method performs better
than rewriting the streams as sequential (StreamSequential)
and applying Streamliner to optimize the sequential streams
(StreamSequentialOpt). Comparing the speedup enabled by
Streamliner on sequential streams and the speedup enabled by
our approach on parallel streams does not fall in the scope
of the evaluation. Instead, our goal is verifying that the code
version resulting from our method is the most efficient among
the four evaluated ones. As mentioned in Section IV-A, our
method uses the same number of fork-join tasks that would be
created using the Stream API and does not alter task granularity.
Hence, StreamParallel and StreamParallelOpt use the same
level of parallelism.

We run all experiments on two machines MA and MB . MA

is equipped with an 18-core Intel i9-10980XE (3.00 GHz)
with 256 GB of RAM. MB is equipped with two NUMA
nodes, each with an 8-core Intel Xeon E5-2680 (2.7 GHz) and
64 GB of RAM. The operating system is Linux Ubuntu (kernel
version 5.4.0-58-generic) and the language runtime is Oracle
JDK, build 11.0.10+8-LTS-16 (i.e., the latest long-term-support
JDK release at the time of writing).

For each benchmark, we first perform 5 warm-up iterations
to let dynamic compilation and garbage-collection ergonomics
stabilize; then, we run 10 steady-state iterations. The figures
in this section report the arithmetic mean over the steady-state
iterations.

B. Execution Time

Figure 9 reports our results in terms of execution-time
speedup factor (i.e., the ratio between StreamParallel,
StreamSequential, StreamSequentialOpt, and our approach
StreamParallelOpt) on both machines. In particular, the x-axis
reports different benchmarks, while the logarithmic y-axis re-
ports the speedup factor. Above each bar, we report the speedup
of the code resulting from our approach (StreamParallelOpt)
w.r.t. the corresponding code version.

Overall, our approach of transforming parallel streams into
iterative loops yields code that is significantly faster than
parallel streams. This is remarked by the fact that each green
StreamParallel bar is greater than 1. On MA, the speedups
range from a factor of 1.01× (distinctAll) to a factor of
201.03× (distinctFew), while on MB , they span values between
1.02× (distinctAll) and 164.4× (distinctFew). The average
speedup factor (geometric mean) is 5.38× and 6.75× for MA

and MB , respectively, and 6.02× across both machines. In
addition, transforming parallel streams into imperative loops
using our approach always leads to faster code than both trans-
forming the stream into a sequential one (StreamSequential
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Fig. 9. Speedup factors achieved by the proposed approach (StreamParallelOpt). Error bars indicate standard deviations.

bar) and applying Streamliner to it (to transform a sequential
stream into imperative code; StreamSequentialOpt bar). The
average speedup factor across both machines w.r.t. Stream-
Sequential and StreamSequentialOpt is 19.51× (geometric
mean) and 7.98×, respectively. The maximum speedup factor is
569.95× for StreamSequential (megamorphicMaps on MB)
and 16.19× for StreamSequentialOpt (distinctFew on MA).

We now provide more details on individual benchmarks.
Among the benchmarks that do not use any distinct or limit
operation (all except distinctFew, distinctAll, and limit), the
highest speedup w.r.t. StreamParallel can be observed in
megamorphicFilters (13.56× on MA, 14.27× on MB) and
megamorphicMaps (33.77× on MA, 45.17× on MB). The
reason is that in such benchmarks, the streams execute a series
of operations that makes it difficult for the JIT compiler to
optimize the stream pipeline (i.e., a sequence of filter and map
operations, respectively). Our approach is particularly useful in
such cases, as it completely removes such operations, resulting
in code more easily optimizable by the JIT compiler.

Our approach to transform the distinct operation is evaluated
in two benchmarks, i.e., distinctFew and distinctAll. These two
benchmarks are composed of the same pipeline of operations.
In distinctFew there are only 10 distinct elements in the
stream out of a total of 108 elements, while in distinctAll

the pipeline is composed of 107 elements that are all different.
These two settings allow us to compare a best- (distinctFew)
and worst-case scenario (distinctAll) for our approach. In the
best-case scenario, the non-blocking test shown in Figure 7
(seenElements.contains(element) at line 9) returns true
in most cases, without incurring synchronization overheads
and leading to the execution of line 10. This leads to an
impressive speedup of 201.03× on MA and 164.4× on MB

w.r.t. StreamParallel. On the other hand, in the worst-case
scenario, the non-blocking test always returns false, leading to
the invocation of the add method at line 13 (which contains
sinchronization), and hence to a negligible speedup factor of
1.01× on MA and 1.02× on MB .

Finally, regarding the limit operation (evaluated in the limit
benchmark), our approach outperforms StreamParallel by a
factor of 2.47× on MA and 2.61× on MB . This speedup
mainly stems from the implementation of the counter data
structure discussed in Section V-B. To confirm this observation,
we evaluate two different variants of our approach: the current
one (using the data structure shown in Figure 8) and a “naive”
one using a single shared AtomicLong. The former yields code
that is 20.55× faster than the latter, confirming the improved
efficency of our implementation.
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Fig. 10. Memory-saving factors enabled by the proposed approach (StreamParallelOpt). Error bars indicate standard deviations.

C. Memory Allocation

Figure 10 reports our results in terms of memory-saving
factor, i.e., the ratio between the memory allocation of Stream-
Parallel and StreamParallelOpt, where “memory allocation”
refers to the allocated bytes per benchmark iteration. We report
the memory saving factor on both MA and MB .

As the figure shows, our implementation significantly reduces
the memory allocation in most of the benchmarks. With
the exception of distinctAll, on MA, reductions span from
a factor of 1.49× (limit) to 3.9× (distinctFew), while on
MB they range from 1.15× to 3.87×. On average (including
distinctAll), our technique reduces memory allocation by a
factor of 2.05× on MA, 2.11× on MB , and 2.07× across
both machines. Such reductions stem from the fact that our
technique removes the abstraction of the Stream API, which
causes the allocations of many objects in each intermediate
operation during the processing of a stream pipeline. The
only benchmark in which our technique does not reduce the
memory allocation is distinctAll. This is expected, since in
distinctAll the memory pressure is dominated by the large
ConcurrentHashMap which keeps track of the 107 distinct
elements (even without using our approach).

VII. RELATED WORK

Below, we present related work that focuses on the Stream
API.

Some related work optimize parallel streams by using
hardware accelerators. Ishizaki et al. [6] speed up parallel
stream execution by compiling lambda expressions into GPU
code and automatically generating runtime calls that handle
low-level operations, such as memory management. Hayashi
et al [5] develop a JIT compiler exploiting supervised machine
learning techniques to construct performance heuristics that
allow selecting a preferable hardware device for parallel stream
execution. To the best of our knowledge, these approaches do
not remove the abstraction of the Stream API and hence are
complementary to our technique.

Khatchadourian et al. [7], [8] present an automated refac-
toring approach to determine when a sequential stream can
be safely converted into a parallel and potentially unordered

stream. Differently from our work, the execution of parallel
streams is not optimized. Hence, the work by Khatchadourian
et al. is synergistic with our approach, as it can increase the
number of parallel streams where our approach is applicable.

Mei et al. [12] study the usage of the Stream API to develop
real-time systems. Their study demonstrates that the Stream
API implementation does not allow the usage of real-time
worker threads and hence is not suitable to be used in real-
time contexts. To overcome this limitation, they propose some
implementation-code changes. In contrast to our approach, they
do not propose a technique to remove the abstraction overhead
of parallel streams.

Differently from parallel streams, several studies focus on
the optimization of sequential streams, either via compiler
optimizations or by providing more efficient API implementa-
tions. Streamliner [14] implements a technique to remove the
abstraction overhead of sequential streams. Similarly to our
method, it performs bytecode transformations and exploits a
pointer analysis to detect stream pipelines. However, since the
transformations are low-level and based only on inlining and
stack allocation, parallel streams are not supported.

Ribeiro et al. [23] attempt to provide a new augmented
Java streaming library whose streams can be optimized via
stream fusion [4], a technique that allows removing intermediate
structures that are allocated during stream processing. This
technique is not directly applicable to the existing Stream API,
which would need to be properly rewritten to exploit such
an optimization. In addition, to the best of our knowledge,
this transformation does not work with parallel streams and
cannot be automatically applied in Java due to missing meta-
programming features such as Haskell’s rewrite rules [22],
hence requiring developer intervention.

StreamAlg [1] offers a new streaming library designed for
extensibility and high performance. While the new library
outperforms the Stream API, it does not support parallel
streams.

VIII. CONCLUSION

Here, we illustrate the limitations of our method and we
give our concluding remarks.



Limitations: Similarly to related work [14], our approach
can optimize only streams that are created and executed within
the same method. In addition, it may not be possible to optimize
streams whose pipeline cannot be statically characterized. For
example, a stream execution might be either sequential or
parallel depending on the outcome of an if block. In such a
case, our static analysis cannot determine whether the stream
is parallel or not. Even though a developer can refactor the
code such that our method can be applied, we are investigating
techniques that require no manual intervention to automatically
overcome these limitations.

Concluding Remarks: In complex computer systems, it
is crucial to fully exploit modern multicore architectures and
obtain high performance while preserving code maintainability
and scalability. The Stream API allows one to easily parallelize
code by offering a convenient declarative programming model.
However, the abstraction overhead of such an API often reduces
the effectiveness of the parallelization and increases memory
allocation. In this paper, we present a novel method based on
bytecode transformations to remove the abstraction overhead
of parallel, unordered Java streams by creating specialized fork-
join tasks. Our method requires neither developer intervention
nor changes in the Stream API. We illustrate several optimiza-
tions to reduce the contention and synchronization overhead in
the transformation of stateful and short-circuiting operations.
Experimental results show that our optimized code significantly
reduces execution time and memory allocation. In particular,
our approach yields an average execution-time speedup of
6.02× up to a maximum of 201.03×, while reducing memory
allocation by a factor of 2.07× on average and up to a factor
of 3.9×.

As part of our future work, we plan to fully support the
flatMap operation and to extend our technique to support
parallel ordered streams. We also plan to release an open-
source tool implementing our approach in the near future.
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