Università della Svizzera italiana Faculty of Informatics

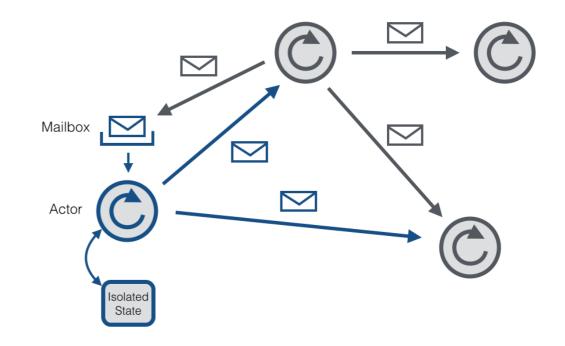
Efficient Profiling of Actor-based Applications in Parallel and Distributed Systems

Andrea Rosà*, Lydia Y. Chen[^], and Walter Binder*

*Università della Svizzera italiana (USI), Faculty of Informatics, Lugano, Switzerland ^IBM Research Lab Zurich, Rüschlikon, Switzerland

> ICOOOLPS 2016 July 18th, 2016 Rome, Italy

Università
della
Svizzera
italiana


- Position paper on the need for **profiling actors**
- In particular:
 - Actor utilization
 - Communication between actors
- Preliminary results to support our position

Actors

- Atomic entities communicating via messages
- Continuously listen for incoming messages
- Execute work in response to a message:
 - Send messages
 - Create new actors
 - Change behavior

. . .

- Properties:
 - Cannot share state
 - Communicate only via asynchronous messages
 - Opaque addressing
- Benefits:
 - Avoid data races
 - Absence of locks in the programming model helps avoid deadlocks
 - Keep the design simple
 - Easy to distribute across cores or machines

Actors in practice

- Programming languages:
 - Erlang
 - Elixir
 - ...
- Libraries:
 - Many implementations for Java, C++, Python, .NET, Haskell, ...
 - On the JVM: Akka
 - Replaced Scala actors since 2013

Actors in practice

- Applications:
 - Computing workers (e.g., Signal/Collect)
 - Communication endpoints (e.g., Apache Spark, Apache Flink)
 - Used in several commercial products (e.g., Amazon's SimpleDB, Facebook Chat System, WhatsApp)
 - Corpus of Akka applications [1]
- Actors are typically mixed with other concurrent abstractions (e.g., threads, futures)

Actor profiling

• Computing workers

Actor utilization

• Communication endpoints

Communication between actors

Actor profiling

Actor utilization

Computations executed by actors

- Low values:
 - Bad division of computations to actors
 - Too many actors wrt. work to be done
 - Small computations per message

Actor profiling

Actor utilization

Computations executed by actors

- Low values:
 - Pinpoint that rethinking the application might be useful:
 - Redesign division of computations to actors
 - Remove some actors

Actor profiling

Actor utilization

Computations executed by actors

- High values:
 - Parallelization opportunities might be missed
 - Depending on idle system resources, it might be beneficial to:
 - Decrease the amount of computations executed per message
 - Add more actors

Actor profiling

Actor utilization

Computations executed by actors

- Expressed as bytecode count
 - Platform-independent
 - Ensures comparable profiles
 - Ensures reproducible profiles for fully deterministic applications and environments
 - Not affected from instrumentation perturbations
 - Requires full bytecode coverage to be accurate

. . .

Faculty of Informatics

Actor profiling

Communication between actors

- # messages sent/received
- Message types sent/received
- Computations executed per message (type)
- Possible analyses:
 - Analysis of message flow
 - Identify messages that trigger execution of few computations
 - Identify unhandled messages

Related work

- In general, there is a shortage of profilers for actors
- Exception: Akka [2, 3, 4, 5, 6]
 - Little focus on utilization/communication
 - Typical focus: mailbox size, time in mailbox, errors, dispatchers, ...
- Not actor-centric profilers are little applicable to actors
 - Several profilers focus mainly on threads
 - Communication profilers focus mainly on the network stack

- [3] Takipi. https://www.takipi.com.
- [4] Akka Tracing. https://github.com/levkhomich/akka-tracing.
- [5] AppDynamics. https://www.appdynamics.com/java/akka/.
- [6] NewRelic. https://newrelic.com.

^[2] Lightbend Monitoring. https://www.lightbend.com/products/monitoring.

Recap

- Profiling actors can benefit several applications and users
- Tracking actor utilization and communication can lead to useful analyses
- Existing profilers are little adequate

Preliminary evaluation

- We show preliminary evaluation results on the Savina actor-based suite [7]
 - Utilizes actors as computing workers
- We rely on the DiSL dynamic program analysis framework [8]
 - Guarantees full bytecode coverage

^[7] S. M. Imam and V. Sarkar. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor Libraries. In AGERE!, pages 67–80, 2014.

^[8] L. Marek, A. Villazon, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. DiSL: A Domain-specific Language for Bytecode Instrumentation. In AOSD, pages 239–250, 2012.

Università
della
Svizzera
italiana

Preliminary evaluation

Results related to the 5 Akka benchmarks with the highest number of actors

Benchmark	Actors		Messages		100			00 5		[0,1]
	#	# types	#	# types			39.1	29.5	50.0	[](1,3] [](3,6] [](6,in
barber	5007	7	41474	10	actors 09					<u></u> (0,11
bitonicsort	190525	16	2674730	8	og jo 40	98.7		32.0		99.2
facloc	1370	5	743792	9	%		52.5		50.0	
fib	150052	4	450197	6	20			38.2	50.0	
fjcreate	40004	4	80003	5	0		8.3			
		<u>.</u>		<u> </u>	· · ·	barber	bitonicsort	facloc Benchmark	fib	fjcreate

- Many actors are little utilized
- In some actors, message reception might trigger the execution of too little computations
- Potential optimization: increase the amount of computations processed per message

Università
della
Svizzera
italiana

Preliminary evaluation

Results related to the 5 Akka benchmarks with the highest number of actors

Benchmark	Actors		Messages					00 F		[0,1]
	#	# types	#	# types	_ F		39.1	29.5	50.0	(3,6]
barber	5007	7	41474	10						<u></u> (0,iiii
bitonicsort	190525	16	2674730	8	of ac	98.7		32.0		99.2
facloc	1370	5	743792	9	%		52.5		50.0	
fib	150052	4	450197	6	20			38.2	50.0	
fjcreate	40004	4	80003	5	0	barbar	8.3	faclos	fib	fioroata
						barber	bitonicsort	facloc Benchmark	fib	fjcreate

- The system spends resources in creating actors that execute little computations
- Potential optimizations:
 - Redesign assignment of computations to actors
 - Reduce # actors of the same type, preserving application semantics

Università
della
Svizzera
italiana

Conclusions

- Profiling actor utilization and communication can enable optimizations in applications using actors
- Preliminary results encourage further investigation on this topic
- Ongoing work:
 - Design general profiling technique for actors
 - Derive profiler for actor libraries
 - Investigate performance of computing frameworks (e.g., Signal/Collect, Apache Spark, Apache Flink)

Conclusions

Thank you for the attention

- http://inf.usi.ch/phd/rosaa/icooolps16.pdf
- Contact detail:

Andrea Rosà andrea.rosa@usi.ch http://www.inf.usi.ch/phd/rosaa