
Efficient Profiling of Actor-based
Applications in Parallel and

Distributed Systems

Andrea Rosà*, Lydia Y. Chenˆ, and Walter Binder*

*Università della Svizzera italiana (USI), Faculty of Informatics, Lugano, Switzerland
ˆIBM Research Lab Zurich, Rüschlikon, Switzerland

ICOOOLPS 2016
July 18th, 2016

Rome, Italy

Overview

2

• Position paper on the need for profiling actors
• In particular:

- Actor utilization
- Communication between actors

• Preliminary results to support our position

Actors

• Atomic entities communicating via
messages

• Continuously listen for incoming
messages

• Execute work in response to a
message:
- Send messages
- Create new actors
- Change behavior
- …

Actors

• Properties:
- Cannot share state
- Communicate only via asynchronous messages
- Opaque addressing

• Benefits:
- Avoid data races
- Absence of locks in the programming model helps

avoid deadlocks
- Keep the design simple
- Easy to distribute across cores or machines

Actors in practice

• Programming languages:
- Erlang
- Elixir
- …

• Libraries:
- Many implementations for Java, C++, Python, .NET,

Haskell, …
- On the JVM: Akka
‣ Replaced Scala actors since 2013

Actors in practice

• Applications:
- Computing workers (e.g., Signal/Collect)
- Communication endpoints (e.g., Apache Spark,

Apache Flink)
- Used in several commercial products (e.g., Amazon’s

SimpleDB, Facebook Chat System, WhatsApp)
- Corpus of Akka applications [1]

• Actors are typically mixed with other concurrent
abstractions (e.g., threads, futures)

[1] http://actor-applications.cs.illinois.edu/akka.html  

Actor profiling

• Computing workers
Actor utilization

• Communication endpoints
Communication between actors

Actor utilization

Computations executed by actors
 Creation cost

• Low values:
- Bad division of computations to actors
- Too many actors wrt. work to be done
- Small computations per message

Actor profiling

Actor utilization

Computations executed by actors
 Creation cost

• Low values:
- Pinpoint that rethinking the application might be

useful:
‣ Redesign division of computations to actors
‣ Remove some actors

Actor profiling

Actor utilization

Computations executed by actors
 Creation cost

• High values:
- Parallelization opportunities might be missed
- Depending on idle system resources, it might be

beneficial to:
‣ Decrease the amount of computations executed  

per message
‣ Add more actors

Actor profiling

Actor utilization

Computations executed by actors
 Creation cost

Actor profiling

• Expressed as bytecode count
- Platform-independent
- Ensures comparable profiles
- Ensures reproducible profiles for fully deterministic

applications and environments
- Not affected from instrumentation perturbations
- Requires full bytecode coverage to be accurate

Communication between actors

• # messages sent/received
• Message types sent/received
• Computations executed per message (type)
• …

Actor profiling

• Possible analyses:
- Analysis of message flow
- Identify messages that trigger execution of few

computations
- Identify unhandled messages
- …

• In general, there is a shortage of profilers for actors
• Exception: Akka [2, 3, 4, 5, 6]

- Little focus on utilization/communication
- Typical focus: mailbox size, time in mailbox, errors,

dispatchers, …
• Not actor-centric profilers are little applicable to actors

- Several profilers focus mainly on threads
- Communication profilers focus mainly on the network

stack

Related work

[2] Lightbend Monitoring. https://www.lightbend.com/products/monitoring.  
[3] Takipi. https://www.takipi.com.  
[4] Akka Tracing. https://github.com/levkhomich/akka-tracing.
[5] AppDynamics. https://www.appdynamics.com/java/akka/.
[6] NewRelic. https://newrelic.com.

• Profiling actors can benefit several applications and
users

• Tracking actor utilization and communication can
lead to useful analyses

• Existing profilers are little adequate

Recap

Preliminary evaluation

• We show preliminary evaluation results on the Savina  
actor-based suite [7]
- Utilizes actors as computing workers

• We rely on the DiSL dynamic program analysis  
framework [8]
- Guarantees full bytecode coverage

[7] S. M. Imam and V. Sarkar. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor
Libraries. In AGERE!, pages 67–80, 2014.
[8] L. Marek, A. Villazon, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. DiSL: A Domain-specific Language for
Bytecode Instrumentation. In AOSD, pages 239–250, 2012.

Benchmark Actors Messages
types # # types

barber 5007 7 41474 10
bitonicsort 190525 16 2674730 8
facloc 1370 5 743792 9
fib 150052 4 450197 6
fjcreate 40004 4 80003 5

Benchmark
barber bitonicsort facloc fib fjcreate

%
 o

f a
ct

or
s

0

20

40

60

80

100

99.2

50.0

50.0
29.5

38.2

32.0

39.1

52.5

8.3

98.7

[0,1]
(1,3]
(3,6]
(6,inf)

Results related to the 5 Akka benchmarks with the highest number of actors

• Many actors are little utilized
• In some actors, message reception might trigger  

the execution of too little computations
• Potential optimization: increase the amount of computations

processed per message

Preliminary evaluation

Benchmark Actors Messages
types # # types

barber 5007 7 41474 10
bitonicsort 190525 16 2674730 8
facloc 1370 5 743792 9
fib 150052 4 450197 6
fjcreate 40004 4 80003 5

Benchmark
barber bitonicsort facloc fib fjcreate

%
 o

f a
ct

or
s

0

20

40

60

80

100

99.2

50.0

50.0
29.5

38.2

32.0

39.1

52.5

8.3

98.7

[0,1]
(1,3]
(3,6]
(6,inf)

Results related to the 5 Akka benchmarks with the highest number of actors

• The system spends resources in creating actors that execute little
computations

• Potential optimizations:
- Redesign assignment of computations to actors
- Reduce # actors of the same type, preserving application

semantics

Preliminary evaluation

• Profiling actor utilization and communication can
enable optimizations in applications using actors

• Preliminary results encourage further investigation on
this topic

• Ongoing work:
- Design general profiling technique for actors
- Derive profiler for actor libraries
- Investigate performance of computing frameworks (e.g.,

Signal/Collect, Apache Spark, Apache Flink)

Conclusions

Thank you for the attention

• http://inf.usi.ch/phd/rosaa/icooolps16.pdf

• Contact detail:

Andrea Rosà 
andrea.rosa@usi.ch  
http://www.inf.usi.ch/phd/rosaa

Conclusions

mailto:andrea.rosa@usi.ch
http://www.inf.usi.ch/phd/rosaa

