
Heap-Snapshot Matching and Ordering using CAHPs:
A Context-Augmented Heap-Path Representation for Exact
and Partial Path Matching using Prefix Trees

MATTEO BASSO, Università della Svizzera Italiana (USI), Switzerland
ALEKSANDAR PROKOPEC, Oracle Labs, Switzerland
ANDREA ROSÀ, Università della Svizzera Italiana (USI), Switzerland
WALTER BINDER, Università della Svizzera Italiana (USI), Switzerland

GraalVM Native Image is increasingly used to optimize the startup performance of applications that run on

the Java Virtual Machine (JVM), and particularly of Function-as-a-Service and Serverless workloads. Native

Image resorts to Ahead-of-Time (AOT) compilation to produce a binary from a JVM application that contains

a snapshot of the pre-initialized heap memory, reducing the initialization time and hence improving startup

performance. However, this performance improvement is hindered by page faults that occur when accessing

objects in the heap snapshot. Related work has proposed profile-guided approaches to reduce page faults

by reordering objects in the heap snapshot of an optimized binary based on the order in which objects are

first accessed, obtaining this information by profiling an instrumented binary of the same application. This

reordering is effective only if objects in the instrumented binary can be matched to the semantically equivalent

ones in the optimized binary. Unfortunately, this is very challenging because objects do not have unique

identities and the heap-snapshot contents are not persistent across Native-Image builds of the same program.

This work tackles the problem of matching heap snapshots, and proposes a novel approach to improve

the mapping between semantically equivalent objects in different binaries of a Native-Image application. We

introduce the concept of context-augmented heap path (CAHP)—a list of elements that describes a path to an

object stored in the heap snapshot. Our approach associates a CAHP to each object in a way that is as unique

as possible. Objects with the same CAHP across different binaries are considered semantically equivalent.

Moreover, since some semantically equivalent objects may have different CAHPs in the instrumented and

optimized binaries (due to nondeterminism in the image-build process and other factors), we present an

approach that finds, for each unmatched CAHP in the optimized binary, the most similar CAHP in the

instrumented binary, associating the two objects. We integrate our approach into Native Image, reordering

the objects stored in the heap snapshot more efficiently using the improved mapping. Our experiments show

that our approach leads to much less page faults (2.98× on average) and considerably improves startup time

(1.98× on average) w.r.t. the original Native-Image implementation.

CCS Concepts: • Software and its engineering → Compilers; Software performance; File systems
management; Virtual machines; • Computer systems organization→ Cloud computing.

Additional Key Words and Phrases: GraalVM, Native Image, Startup Performance, Heap Path, Binary Reorder-

ing, Profiling, Profile-guided Optimizations, Serverless Computing, Function-as-a-Service.

ACM Reference Format:
Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder. 2025. Heap-Snapshot Matching and

Ordering using CAHPs: A Context-Augmented Heap-Path Representation for Exact and Partial Path Matching

Authors’ Contact Information: Matteo Basso, Università della Svizzera Italiana (USI), Lugano, Switzerland, matteo.basso@

usi.ch; Aleksandar Prokopec, Oracle Labs, Zurich, Switzerland, aleksandar.prokopec@oracle.com; Andrea Rosà, Università

della Svizzera Italiana (USI), Lugano, Switzerland, andrea.rosa@usi.ch; Walter Binder, Università della Svizzera Italiana

(USI), Lugano, Switzerland, walter.binder@usi.ch.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART325

https://doi.org/10.1145/3763103

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

https://orcid.org/0000-0002-7219-9077
https://orcid.org/0000-0003-0260-2729
https://orcid.org/0000-0002-6467-0113
https://orcid.org/0000-0002-2477-2182
https://orcid.org/0000-0002-7219-9077
https://orcid.org/0000-0003-0260-2729
https://orcid.org/0000-0002-6467-0113
https://orcid.org/0000-0002-2477-2182
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763103

325:2 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

using Prefix Trees. Proc. ACM Program. Lang. 9, OOPSLA2, Article 325 (October 2025), 28 pages. https:

//doi.org/10.1145/3763103

1 Introduction
Serverless and Function-as-a-Service (FaaS) workloads are becoming prevalent in cloud runtimes

and data centers. Unlike traditional server-side applications that run for a long time or perform

extensive computations, these workloads are typically short-running, and therefore benefit less

from optimizations performed by a Just-In-Time (JIT) compiler [1]. In these workloads, optimizing

startup performance is often equally important as optimizing steady-state performance. Doing

so is key to saving computational resources, maximizing the throughput of cloud services, and

minimizing the chances of not meeting the service-level agreements (SLAs) of service providers.

A prominent approach to optimizing startup performance is to ahead-of-time (AOT) compile the

code (e.g., application classes, standard-library classes, statically linked native code) to a native

executable binary. Doing so reduces the time spent in initializing and compiling the runtime, and

helps speed up application startup. In the context of Java Virtual Machine (JVM), this technique

is implemented in Native Image [50], which creates a binary file from a JVM application,
1
preini-

tializing the Java environment at build time. A distinguishing feature of Native Image is that, in

addition to the executable code, the generated binary also contains a snapshot of the preinitialized

heap memory (i.e., Java objects).

Problem. Although embedding the code and a heap snapshot in the binary reduces the initializa-

tion time, a larger binary may still considerably impair the startup performance. Related work has

shown that page faults
2
can significantly increase the startup time of Native-Image applications [4].

Page faults in Native-Image binaries can arise either from accesses to code or to the objects in the

heap snapshot. In the binary, one page typically contains many accessed and unaccessed method-

s/objects. A promising approach to decrease page faults in Native-Image binaries is to rearrange

code and objects in the binary, compacting them in fewer contiguous pages according to the order

in which code is executed and objects are accessed. In particular, related work [4] achieves this

owing to a profile-guided approach, which generates an instrumented binary of a Native-Image

application to collect a profile that records the order in which code is first executed and in which

objects are accessed
3
. This profile is then used to create a second binary in which the code and

objects are laid out according to the order reflected in the profile.

Challenges. To be effective, the above approach requires that the code and objects in the

profiles (obtained from the instrumented binary) can be matched to the corresponding ones in

the optimized binary. While this is easy for code (because methods are unequivocally identified

by their signatures), doing so for objects is very challenging, because an object does not have a

unique name or identifier, and the heap-snapshot contents are not necessarily the same across

image builds, due to nondeterminism during AOT compilation and during the execution of class

initializers (§2.1). The aforementioned work attempts to address this challenge by hashing the

structure and values in the objects and trying to reconcile semantically equivalent objects
4
by

1
In this article, we refer to the binary files created by Native Image with both the terms “image” and “binary”.

2
A page fault is an exception that occurs when a process attempts to access code/data that is in its address space but is not

currently loaded in memory. Upon the occurrence of a page fault, the OS loads the page (i.e., a fixed-length contiguous

block of memory) containing the data from storage into memory. The page contains not only the data that will be accessed

but also potentially other data that will not be accessed.

3
Code and Image heap objects are always pinned to the same pages and placed at the same address in memory. Only the

first access causes a page fault if the code/object is stored in a single page.

4
In this article, we consider as semantically equivalent objects that have equivalent accesses in two execution traces of the

program.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

https://doi.org/10.1145/3763103
https://doi.org/10.1145/3763103

Heap-Snapshot Matching and Ordering using CAHPs... 325:3

comparing the computed hashes. While prior work is effective in reducing page faults related to

code accesses, the performance improvements due to object-reordering are minor in comparison.

(a) Related work [4].

(b) Our strategy.

Fig. 1. Visual rep-
resentation of page
faults on the heap
section of Native-
Image binaries for
workload Bounce.

Goal. This work addresses the object-matching problem with a novel

approach that improves the mapping between objects in the instrumented

binary and the semantically equivalent ones in the optimized binary. Our

object-matching heuristics enable a better heap layout, i.e., a serialization of

the heap object graph optimized for reducing page faults. Since our approach

modifies only the serialized representation of the heap object graph and not

the heap object graph itself, we do not impair the correctness of the binary

(§5). Suboptimal layouting only leads to a lower reduction of page faults w.r.t.

optimal layouting, as objects that are not matched or wrongly matched are

likely to still cause page faults.

Achievements. We show that our approach significantly reduces page

faults related to object accesses and considerably improves the startup per-

formance of Native-Image applications (§6). Fig. 1 illustrates how the new

object-mapping approach reduces page faults. The figure shows the page

faults that occurred in the heap section of the binary (i.e., when accessing

objects) during the execution of the Bounce workload from the “Are We Fast

Yet?” (AWFY) suite [29] (see §6). Fig. 1a refers to the binary produced by the

most efficient object-ordering technique proposed in related work [4] (called

heap path). Fig. 1b refers to the binary produced by the strategy presented

in this article. Each cell represents a page in the binary. Black pages were not

mapped to virtual addresses, green pages caused page faults, and red pages

were paged-in (premapped) by the operating system. Red and (particularly)

green cells are indicative of startup inefficiencies. Fig. 1a shows that page

faults are spread throughout the heap, indicating the potential for a better

layout—many objects are not matched and hence not compacted in fewer

pages, still causing page faults. Fig. 1b shows fewer localized page faults,

indicating that our approach maps and orders objects more effectively.

Contributions. This work makes the following contributions.

• CAHP-based object matching. We propose a novel approach to improve mappings between

semantically equivalent objects in different binaries (§3 and §4). We define the concept of context-
augmented heap path (CAHP), i.e., a list of elements that describes each object in the heap. In

the instrumented-image build, we compute the CAHPs of all objects. In the optimized build,

we again compute the CAHP associated with each object in the heap of the optimized image.

We then check whether the same CAHP is associated with an object from the instrumented-

image. If a match is found, the objects associated with the matched CAHP are considered

semantically equivalent (exact path matching). CAHPs effectively enable the matching of more

objects w.r.t. existing strategies.

• Partial path matching. Unfortunately, due to divergences between the instrumented and the

optimized builds (§2.1), semantically equivalent objects may have different CAHPs between

builds, causing a mismatch. To mitigate these inaccuracies and to further reduce page faults, we

propose a technique (called partial path matching) that identifies, for each unmatched CAHP

in the optimized image, the most similar CAHP in the instrumented image, and associates the

respective objects. In the optimized build, we use the object-equivalences computed by the exact

and partial path matching to order the objects in the heap snapshot according to the profiles.

• Implementation in Native Image.We integrate our technique into the Native-Image building

process (§3 and Appendix A). We develop a tracing profiler to produce object-ordering profiles

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:4 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

and discuss optimizations that reduce the build-time overhead and mitigate inaccuracies in

matching objects.

• Experimental evaluation.We perform an evaluation of the new object-mapping technique,

and the respective object reordering, on Native-Image binaries (§6). We measure page-fault

reduction, execution-time speedup, and build-time overhead. We also analyze heap-ordering

statistics to explain the effects of the proposed ordering strategy. As target workloads, we use

the benchmarks from the AWFY suite [29] and seven popular microservice frameworks [12, 21,

30, 34, 37, 41, 48]. Our experimental results show that our improved object-mapping approach

results in many fewer page faults (by 2.98× on average) and considerably improved startup

time (by 1.98× on average) w.r.t. the original Native-Image implementation. Moreover, using

the DaCapo [6] and Renaissance [40] benchmark suites, we show that our approach does not

impair the performance of async/batch workloads where startup performance is not crucial and

the startup time is very short w.r.t. steady-state execution time. Finally, we visually show the

effects of our improved object-matching approach by presenting an analysis of the heap section

of an optimized image (§7).

We start with background in §2, discuss correctness and efficiency in §5, and detail related work

in §8. Finally, we discuss alternative approaches and limitations in §8, and conclude in §10.

2 Background
Here, we discuss Native-Image background and profile-guided reordering in a Native-Image binary.

2.1 Native Image
GraalVM Native Image [32, 50] (called Native Image for brevity) is a technology that uses AOT

compilation to create a binary file from a JVM application, pre-initializing the Java environment at

build time. Applications compiled via Native Image can be executed without instantiating a JVM.

Native Image uses the Graal compiler [11] to produce the binary. Graal performs a pipeline of

transformations on different compilation units (CUs). Each CU is composed of a root (representing
the method from which compilation started), and all the other methods that Graal inlined [39] into

the root. The binary produced by Graal contains the compiled CUs (stored in the .text section of

the binary) and a snapshot of pre-initialized Java heap memory (stored in the .svm_heap section of

the binary). By default, Native Image orders objects in the heap snapshots as follows. First, CUs are

ordered alphabetically, according to the signature of the root method. Then, Native Image detects,

for each CU and following the previous order, all objects reachable from the CU, storing them in the

.svm_heap section of the binary. This section is memory-mapped upon application execution—each

page is lazily copied to memory upon first access.

Native Image supports profile-guided optimizations (PGO) to produce more efficient code. Native

Image can create an instrumented binary, which contains code that collects metrics of interest (e.g.,

branch frequencies, virtual-call receiver types, and method-invocation counts), storing them in

profiles upon application execution. Then, Native Image uses these profiles to produce an optimized
binary (for the same application for which the instrumented binary was created).

Key Design Issues: Heap-Snapshot Divergences Between Builds. To generate the heap

snapshot, Native Image locates the classes that are reachable from the classpath via a points-to
analysis [19, 43, 50], and executes the static initializers of the classes that do not have observable

side-effects. Then, Native Image traverses the object graph in a well-defined depth-first order,

starting from the static fields of the reachable classes and the constants in the .text section. It is
important to note that objects in the object graph and hence in the heap snapshot are very likely to

differ across Native-Image compilations, even for the same application, for a number of reasons:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:5

• Non-determinism in running class initializers: the execution of class initializers occurs in

parallel and is subject to non-deterministic thread scheduling that potentially initializes classes

differently across different runs.

• Non-determinism in the Java Development Kit (JDK) and Java Class Library (JCL): Some

data structures (e.g. hash-tables, due to the default hash-code function being non-deterministic

in JVM implementations) may be structurally different across compilations, even though their

semantics remain the same.

• Different compilation decisions: Graal performs non-deterministic compilation decisions, in

particular method-inlining decisions. Different inlining decisions can affect subsequent compiler

optimizations, such as Partial Escape Analysis (PEA) [45] and constant folding.

• Profiling influencing the contents of the binary: If PGO is used, the instrumentation code

inserted in the instrumented binary significantly alters the CUs (e.g., due to different inlining

decisions) and the object allocations w.r.t. the optimized binary.

2.2 Profile-Guided Binary Reordering
The approach proposed in this article is related to prior work [4], which proposes to order code

and objects in a Native-Image binary to decrease page faults and improve startup time. The above

technique uses PGO, saving in the profiles the order in which the CUs are first executed and objects

in the heap snapshot are first accessed. When generating a binary, the technique computes an

ID for each object. Upon instrumented-binary execution, the technique collects the ID associated

with each accessed object in the profiles. In the optimized build, the technique attempts to find, for

each object in the heap snapshot, an object with the same ID from the profiles. If found, the two

objects are considered semantically equivalent, and the information associated with the object in

the profiles is used to position the corresponding object in the optimized binary.

From the above description, it follows that the efficiency in ordering objects in the heap snapshot

(and hence in reducing page faults and startup time) depends on the ability to generate the same

ID for semantically equivalent objects in different binaries. The technique proposes three different

strategies to do so. The first assigns sequential IDs to objects, in the order in which they are

encountered during heap snapshotting. The second identifies objects through hashes, computing

them taking into account their type, their fields and their neighbours in the object graph. The third

assigns an ID to an object based on its heap path, i.e., a list of all objects and arrays found on the

path in the object graph that led to the inclusion of that object in the heap snapshot. The heap path

is then hashed to obtain an ID for the object.

Problem. Unfortunately, none of the above strategies results in a satisfactory reduction of the

application startup time. In the experiments reported by related work, the strategies can achieve

only an average startup speedup of 1.07×, 1.09×, and 1.11×, respectively. These minor improvements

stem from the poor capabilities of the strategies in generating the same ID for objects that are

semantically equivalent in different binaries. The approach presented in this article tackles this

problem, proposing a novel approach to generate the same ID for semantically equivalent objects

that is more robust and efficient than the ones proposed by related work. Our technique is based

on the heap path strategy and is described in the following section.

3 Design
In this section, we detail the design of the proposed heap-ordering technique.

Idea. The technique proposed in this work attempts to match two heap-object graphs by tracking

paths that end with the nodes corresponding to the individual objects to be matched. Consequently,

the technique matches objects by considering only (some of) their ancestors and not their siblings

or children. The latter are considered only for objects of some specific types (detailed later) for

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:6 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Heap
Snapshotting

Ahead-of-Time
Compilation Instrumentation

Code Ordering

Heap Ordering

Image-Heap
Writing

Heap-Ordering
Profiles

Code-Ordering
Profiles

Post-Processing
Analyses

Profiled
Execution

Binary

.text section

.svm_heap

section

Points-to
Analysis

Run Static
Initializations

Image-Build Time Execution and
Post-Processing Time

Exact Path
Matching

Partial Path
Matching

CAHP
Generation

Prefix-Tree
Deserialization

Prefix-TreePrefix-Tree
Serialization

1 2.1

2.2 3

4 5

Existing step of the Native-Image building process
Step required to create the instrumented binary Step required to create the optimized binary

Step required to create both the instrumented and the optimized binary

Output

Fig. 2. Integration of our approach into the Native-Image build process.

which we compute an object value (§4.1). Simplifying the problem allows us to (1) design a simpler

solution that does not need to consider the divergences between the entire neighborhoods of two

nodes, which speeds up the matching time (and hence the build time), and (2) easily match the

semantically equivalent objects associated with different paths across builds by computing their

similarity (§4.4). The main challenge is in determining single paths in the two object graphs that

accurately represent semantically equivalent objects.

Design Choices.We match each object in the optimized image with one object in the instru-

mented image. We do not consider the cases where (1) an object in the optimized image is not

present in the instrumented image, and (2) an object in one image is split into multiple objects in the

other image. To the best of our knowledge, no related work detects these cases, which are intrinsic

in the heap-object graphs matching problem. In the former case, no information associated with the

object to be optimized is collected during the instrumented execution, and hence no optimization

may be performed. In the latter case, multiple objects would have different paths, and therefore one

cannot find a match based on those paths, which is the goal of our approach. Since we are interested

in ordering the objects in the optimized image, we do not map all objects in the instrumented image

to objects in the optimized image.

Overview. Fig. 2 shows the integration of the proposed approach into the Native-Image build

process. The number-annotated nodes represent the steps of our approach, performed either

at instrumented- or optimized-image build time (except Step 1 that is executed at both). At

instrumented-image build time, we produce metadata that is used at optimized-image build time.

Below, we summarize the five steps of our approach:

(1) Context-Augmented Heap-Path Generation (§4.1): In this step, which takes place at both

instrumented- and optimized-image build time, we create a list of elements that describes each

object to be stored in the heap snapshot. This list represents a context-augmented heap path
(CAHP), i.e., a path in the heap-object graph that is augmented with additional object-context

information. CAHPs will be later used to compute object IDs and perform the matching between

the objects in the instrumented and optimized images.

(2) Prefix-tree Serialization/Deserialization (§4.2): At instrumented-image build time, we create

a prefix tree of the CAHPs (Step 2.1) and associate an ID with each CAHP (and hence with each

object). This prefix tree is serialized and stored in a file. At optimized-image build time, we load

this prefix tree from the file and deserialize it (Step 2.2).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:7

(3) Exact Path Matching (§4.3): At optimized-image build time, we check whether some of the

CAHPs of the objects in the optimized image correspond to some of the CAHPs of the objects

in the instrumented image. To do so, we search for the CAHPs of the objects of the optimized

image in the prefix tree. We call this search in the prefix tree exact path matching (henceforth

also exact matching for short) since we match the objects of the optimized and instrumented

images by checking the equality of their CAHPs. Objects associated with the matched CAHPs

are associated with the IDs when building the instrumented image.

(4) Partial PathMatching (§4.4): Due to divergences between builds (§2.1), semantically equivalent

objects may have different CAHPs in the instrumented and optimized images. In this case, since

the CAHPs are not equal, the object is not exactly matched by the previous step. To mitigate the

inaccuracies caused by these divergences, we exploit the prefix tree to perform a partial path
match (henceforth also partial match for short): for each unmatched CAHP in the optimized

image, we find the most similar unmatched CAHP in the prefix tree. We associate the object

corresponding to the partially matched CAHP in the optimized image with the ID associated

with the object corresponding to the partially matched CAHP in the instrumented image.

(5) Heap Ordering (§4.5): At optimized-image build time, we use the IDs computed by exact and

partial matching to order the objects to be stored in the heap snapshot according to the profiles.

4 Approach
In each of the next sub-sections from §4.1 to §4.5, we detail one of the five steps of our approach.

4.1 Context-Augmented Heap-Path (CAHP) Generation
1 record Pair <L, R>(L left , R right) {}
2

3 public class Main {
4 private static final Pair <Integer , Integer >
5 APP_VERSION = new Pair <>(1, 0);
6 public static void main(final String [] args)

{
7 final List <String > argsList =
8 Arrays.asList(args);
9 if (argsList.contains("-v")) {
10 System.err.println("v" +

APP_VERSION.left() +
11 "." + APP_VERSION.right());
12 System.exit (0);
13 }
14 // other code omitted for brevity ...
15 }
16 }

Fig. 3. Example Java application that prints the application
version.

Here, we explain the context-augmented

heap-path representation, starting with an

example.

4.1.1 Example. Consider the Java appli-
cation in Fig. 3. Themain method (l. 6–15)

checks whether the input arguments con-

tain the command line option -v (l. 8 and 9).
In this case, the application prints on the

standard error the app version and termi-

nates (l. 10–12). Otherwise, the execution

continues with code omitted for brevity

(l. 14). The major and minor versions of

the app are retrieved by invoking methods

left and right on the instance of type Pair
(whose definition is reported in l. 1) stored in the static final field APP_VERSION (l. 5), respectively.

The major and minor versions of the app are 1 and 0, respectively.

Fig. 4 reports the subgraph of the heap created by the expression new Pair<>(1, 0) (l. 5) in the

example application. The Pair instance (identified in this example by the label 1 and hence named

Pair@1 for clarity) stores the Integer 1 (label 2) in the field left and the Integer 0 (label 3) in the field

right. Since the Pair reference is stored in a static final field, consider the case where this reference
is constant-folded into method Main.main(String[]). Fig. 5 shows the CAHP for Integer@2. Each
node represents an element of the CAHP and reports inside the associated value (as later detailed

in Table 1). The index of the element in the list is reported on the left side between square brackets,

before the element type. The CAHP associated with Pair@1 simply consists of the first two nodes

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:8 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Table 1. Element types composing a context-augmented heap path (CAHP).
Element
Type Name Value Previous

Element Type
Next
Element Type Description

Method

Method signature

including declaring class

- Object

Method embedding a constant

object reference.

Static Field

Field signature

including holder class

- Object

Static field storing an

object reference.

Data Section - - Object

The next object is stored in

the data section of the binary.

Resource - - Object

The next object represents a

resource.

InternString - - Object

Indicates that the next object

is an interned string.

Object

Fully qualified name

of the object class

Method, Static Field,

Data Section, Resource,

Instance Field, or Array Index

Instance Field, Array Index,

Object Value, or 𝜀

Object (or array) included

in the heap snapshot.

Instance Field

Field signature

including holder class

Object or Object Value Object

Indicates that the preceding

object stores the next object

in the given field.

Array Index Index value Object Object

Indicates that the preceding

object (an array) stores the

next object at the given index.

Object Value

Value representing

the preceding object

Object Instance Field or 𝜀
A value (string) representing

the preceding object.

shown in Fig. 5, while the CAHP associated with Integer@3 contains field Pair.right at index 2 and
value 0 at index 4.

Pair

Integer Integer

1

2 3

Fig. 4. Example heap graph
for the expression new
Pair<>(1, 0).

java.lang.Integer
2

Main.main(String[])

Pair
1

Pair.left

1

[0]: Method

[1]: Object

[2]: Instance Field

[3]: Object

[4]: Object Value

Fig. 5. Context-augmented
heap path (CAHP) associ-
ated with Integer with label
2 in Fig. 4.

4.1.2 Description. We associate each object with a list of elements

computed from the first path in the heap-object graph to that object

found by Native Image when performing the depth-first traversal to

determine the reachable objects to include in the heap snapshot (§2.1).

The list ends with that object. Later, we use these lists to associate objects

with IDs. This allows us to (1) reduce collisions (i.e., the association of the

same ID with semantically different objects), (2) produce debugging and

visualizationmetadata (§7), and (3) perform partial matching by checking

for similar objects (§4.4). In addition to the information encoded in the

path of the heap-object graph, our strategy includes the value encoded

by objects of certain types (explained below). For this reason, we say that

each object is associated with a context-augmented heap path (CAHP)

represented by the list. We design CAHPs to minimize collisions and

maximize similarity. To minimize collisions, we map as few objects

as possible to the same CAHP, while to maximize similarity, we map

semantically equivalent objects to the same CAHP or the most similar

CAHPs across builds.

CAHP Structure. Table 1 shows all the element types composing

CAHPs. Each element type is identified by a name, has a description,

potentially stores a value that represents the element, and potentially defines a relationship with

the previous element, the next element, or both. We report the relationships as a grammar for

CAHPs in Appendix D. We use 𝜀 to denote the end of the list and hence no element. A CAHP starts

with a root element type indicating the reason why the first object is a root in the heap object graph,

namely Method, Static Field, Data Section, Resource, and InternString. Native Image traverses the

object graph in a well-defined depth-first order, starting from the objects stored in required static

fields of the reachable classes (Static Field), the data-section constants (Data Section), the constants
in the code section (Method), the interned strings (InternString), and the resources (Resource). For
example, the first element can be a method in which the object reference was inlined, and its value

is the method signature. The second element of the list must be the object whose reference was

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:9

inlined (element type Object) represented by the fully qualified name of its type. Depending on the

object and heap traversal, the next element can be:

(1) An Instance Field, if the object is a Java object (and not an array) that stores (in a field) a

reference to another object and the heap-traversal algorithm traverses this reference. Instance

fields allow distinguishing multiple instances of the same type, referenced by the same object.

(2) An Array Index, if the object is an array that stores (at a certain index) a reference to another

object and the heap traversal algorithm traverses this reference. Array indexes serve a similar

purpose to instance fields, i.e. clearly distinguishing instances of the same type, referenced by

the same array instance.

(3) An Object Value, if the object is an instance of a known class, a class that encodes metadata

(e.g., java.lang.Class or java.reflect.Method), a boxed primitive, an enum, or a string. The object

value is an optional element that must be followed by either Instance Field or 𝜀.

(4) 𝜀, if the last object is the final object in the CAHP.

Algorithm 1: Context-Augmented Heap-Path

Function

Function contextAugmentedHeapPath(𝑜𝑏 𝑗𝑒𝑐𝑡 , 𝑜𝑔):
computes the context-augmented heap path for the

provided 𝑜𝑏 𝑗𝑒𝑐𝑡

Input:
𝑜𝑏 𝑗𝑒𝑐𝑡 , the object for which the context-augmented heap

path has to be computed

𝑜𝑔, the heap object graph containing the provided 𝑜𝑏 𝑗𝑒𝑐𝑡

Output:
the context-augmented heap path for the provided 𝑜𝑏 𝑗𝑒𝑐𝑡

1 𝑐𝑎ℎ𝑝 ← new𝐶𝐴𝐻𝑃 ()
2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑜𝑏 𝑗𝑒𝑐𝑡

3 while true do
4 if 𝑠ℎ𝑜𝑢𝑙𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝑂𝑏 𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
5 𝑐𝑎ℎ𝑝.𝑝𝑟𝑒𝑝𝑒𝑛𝑑 (new𝑂𝑏 𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
6 𝑐𝑎ℎ𝑝.𝑝𝑟𝑒𝑝𝑒𝑛𝑑 (new𝑂𝑏 𝑗𝑒𝑐𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡))
7 if 𝑜𝑔.𝑖𝑠𝑅𝑜𝑜𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
8 𝑟𝑜𝑜𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ← 𝑛𝑒𝑤𝑅𝑜𝑜𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
9 𝑐𝑎ℎ𝑝.𝑝𝑟𝑒𝑝𝑒𝑛𝑑 (𝑟𝑜𝑜𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡)

10 break

11 else
12 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑜𝑔.𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) .𝑓 𝑖𝑟𝑠𝑡 ()
13 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 instanceof 𝐴𝑟𝑟𝑎𝑦 then
14 𝑖𝑛𝑑𝑒𝑥 ←

𝑜𝑔.𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
15 𝑐𝑎ℎ𝑝.𝑝𝑟𝑒𝑝𝑒𝑛𝑑 (new 𝐴𝑟𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑖𝑛𝑑𝑒𝑥))
16 else
17 𝑓 𝑖𝑒𝑙𝑑 ←

𝑜𝑔.𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐹𝑖𝑒𝑙𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
18 𝑐𝑎ℎ𝑝.𝑝𝑟𝑒𝑝𝑒𝑛𝑑 (new 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑖𝑒𝑙𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑓 𝑖𝑒𝑙𝑑))
19 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

20 return 𝑐𝑎ℎ𝑝

Elements of these types and Object (ex-
cept 𝜀) repeat until the end of the list. We

found that it was important to introduce

the Object Value element to CAHPs, be-

cause this allows distinguishing objects

more precisely (e.g. singleton objects that

represent internal metadata), and it im-

proves matching. Moreover, CAHPs com-

puted for PGO builds do not rely on Array
Index elements, which are used only for

debugging purposes. The reason is that ar-

ray indices are too volatile across Native-

Image builds, and using them would de-

grade PGO improvements.

Collisions. Without employing array

indices, the same CAHPmay be associated

with multiple objects, leading to collisions

as discussed in §6.5 and §7. In this con-

text, Object Value elements are also use-

ful for matching boxed primitives stored

at different array positions. §6 shows the

performance impact of usingObject Value
elements.

4.1.3 Algorithm. The pseudocode to cre-

ate CAHPs is shown in Algorithm 1. The

algorithm takes as input an object (either

an Object or an array reference) and the

heap-object graph that contains the object.

The graph includes reverse links for each object, i.e., a list of all objects pointing to it. The algorithm

is bottom-up: it traverses the object graph from 𝑜𝑏 𝑗𝑒𝑐𝑡 up to one root and prepends the elements

to the CAHP, allowing implementations that exploit dynamic programming (Appendix A). The

first parent returned by an object is always the root or an object that leads to a root (i.e., in our

algorithm we cannot encounter cycles).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:10 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

The algorithm first allocates the empty CAHP (l. 1) and then iteratively traverses the first path

in the heap object graph from the object to the root (l. 2–19). For each object on the path (l. 2), we

check whether we should create an Object Value via the helper function shouldCreateObjectValue
(l. 4) that inspects the type of the object (§4.1.2). If the check succeeds, we create an Object Value
and prepend the element to the CAHP. Then, we prepend an Object element for the current object.

If the object is a root, we prepend the first element (of type Method, Static Field, Data Section,
Resource, or InternString) by leveraging the helper function newRootElement (omitted for brevity)

and break the loop (l. 7–10). If the object is not a root, we obtain its parent in the path (l. 12). If the

parent is an array (l. 13), we obtain the array index where the current object is stored (l. 14), and

we prepend it to the CAHP (l. 15). Otherwise, the parent is an object instance. Hence, we obtain

the field where the current object is stored (l. 17), and we prepend the field to the CAHP (l. 18). We

then repeat this for the parent (l. 19). Finally, we return the computed CAHP (l. 20).

4.2 Prefix-Tree Serialization/Deserialization

java.lang.Integer
2

Main.main(String[])

Pair
1

Pair.left

1

java.lang.Integer
3

Pair.right

0

ID: 1

ID: 2 ID: 3

Fig. 6. Prefix tree produced
by the context-augmented
heap paths (CAHPs) of the
heap graph in Fig. 4.

java.lang.Integer

Main.main(String[])

Pair

Pair.left

2

[0]: Method

[1]: Object

[2]: Instance Field

[3]: Object

[4]: Object Value

Fig. 7. Context-augmented
heap path (CAHP) associ-
ated with Integer encapsu-
lating value 2 for expression
new Pair<>(2, 0).

After computing the set of CAHPs, we construct the prefix tree that will

be later employed to facilitate matching.

4.2.1 Example. Fig. 6 shows the prefix tree (also known as trie) pro-

duced by the CAHPs of the heap graph from Fig. 4 (§4.1.1). The prefix

tree encodes the three CAHPs associated with the three objects (Pair@1,
Integer@2, and Integer@3). The last node of each CAHP is associated

with a CAHP-unique numeric ID that identifies the corresponding ob-

ject. IDs indicate that the prefix tree has been built by inserting first

Pair@1, then Integer@2, and finally Integer@3.

4.2.2 Description. In the instrumentation build, we use the CAHPs to

build a prefix tree where each node corresponds to a CAHP element. A

prefix tree allows fast lookup of CAHPs, enabling efficient matching of

optimized-image CAHPs with instrumented-image CAHPs. We iterate

over all the CAHPs and insert each of them into the prefix tree. Upon

insertion, we associate the node in the prefix tree that corresponds to

the last element of the CAHP with an ID. As a consequence, not only leaf

nodes but every node of the prefix tree whose element is of type Object
or Object Value can be associated with an ID (a CAHP can be a prefix

of another CAHP). The same ID is stored in the object associated with

that CAHP so that it can be profiled at runtime by instrumentation code.

To generate the IDs, we keep a counter (starting from 1), incremented

for each inserted CAHP. Value 0 is reserved and used as null. In the

instrumented build, the prefix tree is serialized and dumped to a file. In the optimized build, the

prefix tree is loaded from the file and deserialized. Since the generation of a prefix tree is standard,

we report the pseudocode in Appendix B.

4.3 Exact Path Matching
In this section, we show an example of exact path matching and then the description of this step.

4.3.1 Example. Consider a scenario in which the application version has been updated from (1, 0)
to (2, 0). The optimized-image build constant-folds an object reference that corresponds to new
Pair<>(2, 0) into the methodMain.main(String[]) instead of new Pair<>(1, 0) (Fig. 3, l. 5). Assume

now that the optimized-image build uses profiles (and the prefix tree) that were obtained from a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:11

previous version of the application (e.g. profiles could be collected periodically on a production

deployment). When generating CAHPs for objects in the heap snapshot, the optimized-image

build generates exactly the same CAHPs from the prefix tree in Fig. 6 for the Pair object and the

Integer object from the right field (label 3, encapsulating int 0). Since these CAHPs are in the prefix

tree, exact matching finds the corresponding prefix-tree nodes and associates these objects with

IDs 1 and 3, respectively. However, the CAHP associated with the Integer stored in the left field

(Fig. 7) is different from the CAHP shown in Fig. 5— the last element of the newly generated CAHP

stores 2 instead of 1. Since this CAHP is not in the prefix tree, exact matching indicates a failure by

returning the ID 0. The CAHP remains unmatched and the corresponding object lacks an ID. We

handle this unmatched CAHP in §4.4.1.

java.lang.Integer
2

Main.main(String[])

Pair
1

Pair.left

1

java.lang.Integer
3

Pair.right

0

ID: 1

ID: 2 ID: 3

Main.checkLibVersion(Library)

java.lang.Integer
4

2ID: 4

Fig. 8. Extension of the prefix tree in Fig. 6
for amore comprehensive example of partial
matching.

4.3.2 Description. In the optimized build, we match the

objects in the snapshot of the optimized image with the

objects in the snapshot of the instrumented image (and

hence in the profiles collected by the instrumented ex-

ecution of the application). Matched objects (and hence

CAHPs) are assigned the same ID. To do so, we perform

exact path matching, which pairs the objects in the opti-

mized image with objects in the instrumented image by

checking for the equality of their CAHPs. To be equal, two

CAHPs must consist of the same elements. The CAHPs

of the objects of the instrumented image are stored in the

prefix tree, while the CAHPs of the objects of the optimized image are kept by Native Image. We

iterate over all the CAHPs of the optimized image and we check whether each of these CAHPs is in

the prefix tree. The CAHPs that are found in the prefix tree are assigned the ID associated with the

last element of the CAHP in the tree. Since exact path matching represents a lookup in the prefix

tree, a well-known operation, we report the pseudocode of exact path matching in Appendix C.

4.4 Partial Path Matching
In this section, we report an example, the description, and the algorithm of partial matching.

4.4.1 Example. We perform a partial match for the unmatched CAHP discussed in §4.3.1 and

reported in Fig. 7. To present a more comprehensive example, we consider the prefix tree in Fig. 8,

which extends the one shown in Fig. 6 by adding a subtree for Integer with value 2 (whose ID

is 4), which is constant-folded into another method Main.checkLibVersion(Library). The nodes
corresponding to the unmatched CAHPs stored in the prefix tree are reported in pink with dashed

borders. Partial matching traverses the prefix tree starting from these nodes, that is, the nodes

whose object type corresponds to the object type of the provided CAHP. Node associated with ID 3

is ignored because the corresponding CAHP has already been exactly matched. While traversing

the prefix tree, elements must match, except for Object Value and Array Index elements. To match

the CAHPs that most likely correspond, partial matching relies on a score function (explained in

§4.4.2). In particular:

• Starting from the node associated with ID 2 (which stores value 1), partial matching computes

the suffix of the CAHP consisting of nodes [Main.main(String[]), Pair, Pair.left, java.lang.Integer,
1] of length 5. To compute this suffix, partial matching uses all elements of the provided CAHP.

Among these nodes, only 4 of them have been matched upon traversal. The last node of the suffix

has not been matched due to a different Object Value element. Partial matching associates this

suffix with a score of 4, i.e., the number of matched nodes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:12 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

• Starting from the node associated with ID 4 and storing value 2, partial matching computes

the suffix consisting of nodes [java.lang.Integer, 2] of length 2. To compute this suffix, partial

matching uses only the last two elements of the provided CAHP. This is because the third-to-last

element of this CAHP (Pair.left of type Instance Field) does not match the element of the parent of

the node corresponding to Integer with label 4 (Main.checkLibVersion(Library) of type Method)
and the elements are neither an Object Value nor an Array Index. Since all the nodes of the suffix

have been matched upon traversal, partial matching associates this suffix with a score of 2.

Algorithm 2: Partial Path Match Function

Function partialPathMatch(𝑟𝑜𝑜𝑡 , 𝑐𝑎ℎ𝑝):
finds the unmatched CAHP in the prefix tree that most

likely corresponds to the given CAHP by performing partial

path matching

Input:
𝑟𝑜𝑜𝑡 , the root of the prefix tree

𝑐𝑎ℎ𝑝 , the CAHP to search for in the prefix tree

Output:
the ID associated with the unmatched CAHP in the prefix

tree that most likely corresponds to the given CAHP or 0 if

no suffix is found

1 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 0

2 𝑚𝑎𝑥𝐼𝑑 ← 0

3 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑𝐶𝑎ℎ𝑝 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑐𝑎ℎ𝑝)
4 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 ← [
5 𝑛𝑜𝑑𝑒 for 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒𝑠 (𝑟𝑜𝑜𝑡)
6 if 𝑛𝑜𝑑𝑒.𝑖𝑠𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 () and 𝑠𝑎𝑚𝑒𝑂𝑏 𝑗𝑒𝑐𝑡𝑇 𝑦𝑝𝑒 (𝑛𝑜𝑑𝑒, 𝑐𝑎ℎ𝑝)
7]
8 foreach 𝑠𝑡𝑎𝑟𝑡 in 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 do
9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠𝑡𝑎𝑟𝑡

10 𝑠𝑐𝑜𝑟𝑒 ← 0

11 foreach 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 in 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑𝐶𝑎ℎ𝑝 do
12 𝑚𝑎𝑡𝑐ℎ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑚𝑎𝑡𝑐ℎ𝑒𝑠 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡)
13 if𝑚𝑎𝑡𝑐ℎ then
14 𝑠𝑐𝑜𝑟𝑒 + +
15 else if not 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑠𝑂𝑏 𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ()
16 or not 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 .𝑖𝑠𝑂𝑏 𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒 () then
17 break

18 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ()
19 if 𝑠𝑐𝑜𝑟𝑒 >𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 then
20 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒

21 𝑚𝑎𝑥𝐼𝑑 ← 𝑠𝑡𝑎𝑟𝑡 .𝑔𝑒𝑡𝐼𝑑 ()

22 return𝑚𝑎𝑥𝐼𝑑

Given the scores of these suffixes, par-

tial matching determines that the CAHP

in the optimized image most likely corre-

sponds to the CAHP associated with ID 2

in the instrumented image, i.e., the CAHP

whose suffix has the highest score (score 4

vs. 2). The object associated with the first

CAHP is associated with ID 2.

4.4.2 Description. As explained in §2.1,

due to divergences between the instru-

mented and optimized builds, the opti-

mized image may contain objects that are

not present in the instrumented build and

vice versa— there is no one-to-one map-

ping between objects of two images and an

object of one image corresponds at most

to an object of the other image (§3). More-

over, the semantically equivalent object in

the optimized and instrumented images

may be connected differently in the object

graph or even store different values (§2.1).

These objects may have different CAHPs

between images and may hence not be

matched exactly. The goal of the partial
path matching step is to match these ob-

jects, mitigating the inaccuracies caused

by divergences between builds. To do so,

we find for each unmatched CAHP in the

optimized image the unmatched CAHP in

the instrumented image that most likely

corresponds to the first. We evaluate the

similarity between CAHPs using the pre-

fix tree and we associate the object corresponding to the partially matched CAHP in the optimized

image with the ID associated with the object corresponding to the partially matched CAHP in the

instrumented image. Partial matching follows the heuristics and rules listed below:

(1) When performing partial matching, we exclude all CAHPs that have been matched exactly in

the previous step. This is because we assume that exact path matching always finds “correct”

matches— we assume that most of the semantically different objects are not associated with

the same CAHP. Excluding exactly matched objects also allows us to reduce the number of

comparisons, speeding up the algorithm and the image build.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:13

(2) Since partial matching provides results based on similarity, partial matching may map multiple

objects with different CAHPs in the optimized image to the same object in the instrumented

image, assigning the same ID.

(3) Similarity is based on three rules:

(a) The two unmatched CAHPs of the semantically equivalent object in two images likely have

a common suffix but not a common prefix. This is because an ancestor of this object may

have been found differently, e.g., because an object has not been constant-folded into a

method but reached through another object. This may happen due to differences in the

inlining decisions, which affect Partial Escape Analysis [45]. Another source of differences in

CAHPs is that the reachability analysis may decide to prune different object fields [51]. We

use the first path to an object that Native Image discovers, and this path may vary between

instrumented and optimized builds.

(b) The semantically equivalent object may acquire different values in two images. This can

be caused by parallel execution of static class initializers during build-time, by build-time

initialization of classes that depend on the system state, or by hash-code nondeterminism.

When computing similarity between CAHPs, we consider CAHPs with equal Object Value
elements to be similar, but we do not exclude CAHPs with different Object Value elements.

(c) Divergences between builds are unlikely to store a semantically equivalent object in different

fields. Hence, we expect Instance Field elements to correspond in common suffixes.

Given an unmatched CAHP in the optimized image, partial matching traverses the prefix tree

bottom-up, starting from all the nodes that correspond to unmatched CAHP (Rule 1) in the instru-

mented image and whose object type corresponds to the object type associated with the CAHP

in the optimized image. For each node, partial matching finds the longest partial suffix of the two

CAHPs (henceforth called suffix for brevity, according to Rule 3a). In this suffix, all the elements

of the two CAHPs match (Rule 3c) except for elements of type Object Value that may not match

(Rule 3b). The starting node may be of element type Object but also Object Value. Then, partial
matching assigns a score to each suffix, computed as the number of elements in the suffix that

match between the two CAHPs. In practice, a suffix can have a score of at least length(suffix) -
numberOfObjectValueElements(suffix) and at most length(suffix). Partial matching associates the

unmatched CAHP in the optimized image with the ID of the CAHP corresponding to the suffix with

the highest score. We note that partial matching may incorrectly identify objects as similar. In the

case of heap ordering, incorrectly matched objects do not compromise application correctness but

potentially lead to incorrectly ordered objects (§5). In §6, we show that partial matching effectively

reduces page faults and improves performance.

4.4.3 Algorithm. The pseudocode for partial matching is shown in Algorithm 2. The algorithm

takes the root of the prefix tree (from the instrumented build) and the CAHP of the object to match

(from the optimized build) as inputs, and returns as output the ID associated with the given CAHP

or 0 if no suffix of the given CAHP is found. The algorithm first defines variables𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 and

𝑚𝑎𝑥𝐼𝑑 (l. 1 and 2). These variables are used to keep track of the highest score among the suffixes

and the corresponding ID. Since we traverse the prefix tree bottom-up, the algorithm reverses the

CAHP provided as input (l. 3). Then, the algorithm collects the nodes in the prefix tree that are

associated with the unmatched CAHPs whose corresponding object is of the same type as the object

represented by the CAHP to match (l. 4–7). These nodes are used to start the traversals (l. 8–9). In

our implementation, we maintain a map to efficiently find these nodes without traversing the entire

prefix tree. For each traversal, we define a 𝑠𝑐𝑜𝑟𝑒 variable that stores the score associated with the

longest suffix (l. 10). The traversal is performed by iterating over the reversed elements of the given

CAHP (l. 11). For each element, the algorithm checks whether the element of the current node

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:14 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

matches the current element (l. 12). If the elements match (l. 13), the algorithm increases the score

by 1 (l. 14). If the elements do not match and at least one of the two is not of type Object Value (l. 15
and 16), the algorithm has found the longest suffix and hence breaks the loop (l. 17). Otherwise,

the algorithm proceeds with the traversal of the suffix by obtaining the parent of the current node

(l. 18). After the traversal, the algorithm checks whether the score associated with this suffix is

greater than𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 (l. 19). If it is, the current score replaces the𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 (l. 20) and the ID

associated with the last node of this suffix becomes the potential ID to be returned (l. 21). If several

suffixes are associated with the highest score, only the first suffix is considered. After processing all

the suffixes, the algorithm returns𝑚𝑎𝑥𝐼𝑑 (l. 22). The complexity of the partial matching algorithm

is 𝑂 (𝑛 ·𝑚) where 𝑛 is the number of unmatched CAHPs in the prefix tree and𝑚 is the average

longest-suffix length. To reduce the execution time of the algorithm, our implementation exploits

several optimizations, which we briefly discuss in Appendix A.

4.5 Heap Ordering
4.5.1 Description. Given a list of objects and access profiles (APs), consisting of a map between

the object ID and the access index, the objective of this step is to order the list by computing an

ascending ordering index (OI) for each object. OIs do not need to be contiguous—gaps in OIs do not

introduce gaps between objects in the produced binary. Moreover, multiple objects may be assigned

to the same OI, in which case they are placed one after the other in the binary. We conceptually

order the objects into four groups, i.e., we place objects with similar properties close together, with

the goal of further reducing page faults. To one OI corresponds a single group. Only within the

first two groups, objects are placed according to their access index. The object-ordering groups are

defined as follows:

(1) The first group contains exactly-matched objects whose IDs are in the APs. Within this group,

objects are ordered according to the index specified in the APs. Hence, the ordering indices of

this group range from 0 to APs.size(). We place these objects close together since we assume

that exact path matching finds “correct” matches—we expect these objects to cause page faults.

(2) The second group contains partially-matched objects whose IDs are in the APs. Within this

group, objects are ordered according to the index specified in the APs. The ordering indices

of this group range from APs.size() to APs.size() * 2. We place partially- and exactly-matched

objects in different groups because partial path matching may be subject to matching errors by

design. We expect some of the objects in this group to not cause page faults.

(3) The third group contains objects whose IDs are in the APs but whose sizes exceed the page size.

All objects in this group have OI equal to APs.size() * 2 + 1. This group limits the separation of

small objects stored in groups 1 and 2 across multiple pages, potentially reducing page faults.

(4) The fourth group contains objects whose IDs are not in the APs. Within this group, objects

maintain the default ordering provided by Native Image. We specify −1 as the OI for the objects
in this group.

4.5.2 Algorithm. The pseudocode of our orderingIndex function is shown in Algorithm 3. Given

the heap-ordering profiles, the orderingIndex function returns the OI associated with the 𝑜𝑏 𝑗𝑒𝑐𝑡

provided as a parameter. First, the algorithm obtains the ID associated with the provided object

(l. 1), and checks whether the ID is in the profiles (l. 2). In this case, the algorithm checks whether

the object size exceeds the page size of the OS for which the binary must be generated (l. 3). If it

does, the algorithm computes and returns the OI associated with the third group (l. 4). If the ID is

in the profiles and the object size does not exceed the page size, the algorithm checks whether the

ID has been obtained via a partial match (l. 5) by calling the isPartiallyMatched helper (omitted for

brevity). In that case, the algorithm returns the sum of the OI reported in the profiles and the size

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:15

of the profiles, placing the object in the second group (l. 6). If the ID is in the profiles, the object

size does not exceed the page size, and the ID is derived via an exact match, the algorithm returns

the index reported in the profiles placing the object in the first group (l. 8). Finally, if the ID is not

in the profiles, we place the object in the fourth group by returning −1 (l. 9).
Algorithm 3: Ordering Index Func-
tion

Function orderingIndex(𝑎𝑝𝑠, 𝑜𝑏 𝑗𝑒𝑐𝑡):
computes the ordering index for the provided

𝑜𝑏 𝑗𝑒𝑐𝑡

Input:
𝑎𝑝𝑠 , a map between profiled IDs and access

indices

𝑜𝑏 𝑗𝑒𝑐𝑡 , the object to be ordered

Output:
a number representing the ordering index for

𝑜𝑏 𝑗𝑒𝑐𝑡 or −1 if the object should not be

ordered

1 𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑 ← 𝑖𝑑 (𝑜𝑏 𝑗𝑒𝑐𝑡)
2 if 𝑎𝑝𝑠.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑) then
3 if 𝑠𝑖𝑧𝑒 (𝑜𝑏 𝑗𝑒𝑐𝑡) >= 𝑂𝑆.𝑔𝑒𝑡𝑃𝑎𝑔𝑒𝑆𝑖𝑧𝑒 ()

then
4 return 𝑎𝑝𝑠.𝑠𝑖𝑧𝑒 () ∗ 2 + 1
5 else if 𝑖𝑠𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦𝑀𝑎𝑡𝑐ℎ𝑒𝑑 (𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑)

then
6 return

𝑎𝑝𝑠.𝑠𝑖𝑧𝑒 () + 𝑎𝑝𝑠.𝑔𝑒𝑡 (𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑)
7 else
8 return 𝑎𝑝𝑠.𝑔𝑒𝑡 (𝑜𝑏 𝑗𝑒𝑐𝑡𝐼𝑑)

9 return −1

4.5.3 Example. Consider the exact and partial

matching performed in §4.3.1 and §4.4.1, respec-

tively, and the following APs:

1: 1, // [ID: 1, accessIndex: 1] Pair
2: 2, // [ID: 2, accessIndex: 2] Pair.left
3: 3 // [ID: 3, accessIndex: 3] Pair.right

Access indices in the APs indicate that, in the

execution of the instrumented binary, the Pair ob-
ject (with ID 1) has been accessed first, followed

by the Integer stored in the left field (with ID 2)

and the Integer stored in the right field (with ID 3).

The Integer with ID 4, reported in Fig. 8 has not

been accessed at runtime and hence is not in the

APs. Our orderingIndex function associates object

1 with OI 1 (exact match), object 3 with OI 3 (exact

match), and object 2 with OI 5 (= 3 + 2 computed

as 𝐴𝑃𝑠.𝑠𝑖𝑧𝑒 () +𝐴𝑃𝑠.𝑔𝑒𝑡 (2)) due to partial matching.

The object associated with ID 4 is not in the APs and

hence is associated with OI 7 (= 3∗2+1 computed as

𝐴𝑃𝑠.𝑠𝑖𝑧𝑒 () ∗ 2 + 1). We produce a binary that stores

the objects with IDs 1–4 in this order: [1, 3, 2, 4].

5 Correctness and Efficiency
Correctness. As shown in Figure 2, our approach performs the heap ordering before image-

heap writing. The heap-ordering step does not modify the heap object graph but its serialized

representation, i.e., we do not modify references between objects but define the order in which

these objects will be stored in the binary. Native Image allows storing the heap object graph in

one of the 𝑁 ! different serialized representations, where 𝑁 is the number of objects in the heap

object graph. All the serialized representations are correct. We choose a representation that is

optimized for reducing page faults. Consequently, no code location or object points to the wrong

objects, preserving program semantics. The image-heap writing step writes the given heap object

graph into the binary, preserving the given object order and references. Algorithm 4 shows the

pseudocode of the image-heap writing step. The algorithm takes as input a binary writer, used to

dump the output native-image binary, and the heap-object graph containing all objects to be stored

in the binary, and returns as output the mapping from the objects in the heap object graph to the

offsets in the binary. The algorithm starts by obtaining the ordered set of objects to write to the

output binary (l. 1). In instrumented and regular builds, objects are returned in the default order

(§2.1), while in optimized builds, objects are returned sorted by ordering index (§4.5). Then, the

algorithm initializes a map between objects and binary offsets (l. 2), writes each object to the output

binary, and obtains the offset in the binary where each object has been stored (l. 3–4). In this step,

objects are written to the output binary by replacing references stored in fields and array locations

with blanks. The reason is that the referenced objects may not have already been written to the

binary and hence cannot be pointed to. Written objects are put in the map and associated with the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:16 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

returned offset (l. 3). After writing all objects in the heap object graph, the algorithm loops over

all the objects again (l. 6). For each referenced field, the algorithm obtains its offset (l. 7) and its

object references in the heap object graph, i.e., the pointed objects (l. 8). For each object reference

(l. 9), the algorithm obtains the associated offset (l. 10) and invokes a fillReferences method (l. 10),

whose purpose is filling the references to the object (left blank on purpose) in the fields and array

locations of the current object. Filling references after dumping the objects allows maintaining

the same heap object graph independently of the object order. Finally, the algorithm returns the

mapping from object to offset (l. 11–12). Native Image will use this mapping to fill references in the

code to objects in the heap snapshot. Algorithm 4: Write Image Heap

Function

Function writeImageHeap(𝑏𝑤, 𝑜𝑔):
writes the given object graph to the output

binary

Input:
𝑏𝑤, helper binary writer used to produce

the native-image binary

𝑜𝑔, the heap object graph to be written

Output:
returns the mapping from the objects in the

heap object

graph to the offsets in the binary and modifies

the output native-image binary via 𝑏𝑤

1 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ← 𝑜𝑔.𝑔𝑒𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 ()
2 𝑜𝑏 𝑗2𝑂𝑓 𝑓 𝑠𝑒𝑡 ← new 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝑀𝑎𝑝 ()
3 foreach 𝑜𝑏 𝑗𝑒𝑐𝑡 in 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 do
4 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑏𝑤.𝑤𝑟𝑖𝑡𝑒 (𝑜𝑏 𝑗𝑒𝑐𝑡)
5 𝑜𝑏 𝑗2𝑂𝑓 𝑓 𝑠𝑒𝑡 .𝑝𝑢𝑡 (𝑜𝑏 𝑗𝑒𝑐𝑡, 𝑜 𝑓 𝑓 𝑠𝑒𝑡)
6 foreach 𝑜𝑏 𝑗𝑒𝑐𝑡 in 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 do
7 𝑜𝑏 𝑗𝑂𝑓 𝑓 𝑠𝑒𝑡 ← 𝑜𝑏 𝑗2𝑂𝑓 𝑓 𝑠𝑒𝑡 .𝑔𝑒𝑡 (𝑜𝑏 𝑗𝑒𝑐𝑡)
8 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑜𝑔.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑜𝑏 𝑗𝑒𝑐𝑡)
9 foreach 𝑐ℎ𝑖𝑙𝑑 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
10 𝑐ℎ𝑖𝑙𝑑𝑂𝑓 𝑓 𝑠𝑒𝑡 ←

𝑜𝑏 𝑗2𝑂𝑓 𝑓 𝑠𝑒𝑡 .𝑔𝑒𝑡 (𝑐ℎ𝑖𝑙𝑑)
11 𝑏𝑤.𝑓 𝑖𝑙𝑙𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 (𝑜𝑏 𝑗𝑒𝑐𝑡, 𝑜𝑏 𝑗𝑂𝑓 𝑓 𝑠𝑒𝑡,

12 𝑐ℎ𝑖𝑙𝑑, 𝑐ℎ𝑖𝑙𝑑𝑂𝑓 𝑓 𝑠𝑒𝑡)

13 return 𝑜𝑏 𝑗2𝑂𝑓 𝑓 𝑠𝑒𝑡

Efficiency. The proposed approach produces cor-

rect binaries, but their object layout is potentially not

optimal. Ordering of multiple objects with the same

ID (§6.5) and potential matching inaccuracies, i.e.,

wrong matches between objects in the instrumented

and optimized images, may lead to suboptimal order-

ing and hence slower startup. In the case of optimal

ordering, all and only the runtime-accessed objects

are placed in a few contiguous pages. In the case of

suboptimal ordering, runtime-accessed objects may

be interleaved with objects that are not accessed,

leading the OS to fetch more pages than what would

be needed in the case of optimal ordering.

6 Evaluation
In this section, §6.1 presents the evaluation settings.

Then, §6.2 analyzes the page-fault-reduction, §6.3

presents the execution-time speedup, and §6.4 shows

the build-time overhead introduced by the proposed

technique. Finally, §6.5 presents heap-ordering sta-

tistics that provide insights into how effective object-

matching and heap ordering are.

6.1 Evaluation Settings
We run our experiments on a machine equipped

with a 16-core Intel Xeon Gold 6326 (2.90 GHz), 256 GB of RAM (8x32GB, 3200MHz), and Solid-state

Drive (SSD, NVMe, U.2, sequential read/write 6800/2700 MB/s, and random read/write 850K/130K

IOPS), running Linux Ubuntu (kernel v. 5.15.0-25-generic). Frequency scaling, turbo boost, hyper-

threading, and address space randomization are disabled, CPU governor is set to “performance”.

We conduct our experiments on the GraalVM Community Edition, based on OpenJDK 21, using the

Graal compiler. We modify both Graal and Native Image to implement our technique. We collect

measurements in an isolated environment with minimal perturbation, where (almost) no other

process is being executed.

The FaaS model assumes that user workloads consist of often short-running programs that

are invoked to handle individual requests. We use the AWFY [29] suite to evaluate the startup-

performance impact, because it consists mainly of short-running programs. The suite consists of

14 benchmarks designed to compare language implementations and optimize their compilers. To

evaluate the improvements on microservices, we employ a helloworld workload implemented using

several widely-used microservice frameworks, particularly Helidon [34], Ktor [21], Micronaut [30],

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:17

Play Framework [37], Quarkus [41], Spring [48], and Vert.x [12]. The computation required to

compute the response is minimal, and most of the time is spent on starting the Native-Image

binary and initializing the framework. We use helloworld because we want to measure startup

improvements in the microservice frameworks, and not in the user application, which we already

evaluate using AWFY. We also report results on a helloworld implemented in Java that uses the

HttpServer class provided by the Java Class Library. We call this workload vanilla. We build statically

linked executables [26]. To evaluate the first binary execution in which data is not already present

in RAM and needs to be fetched, we drop OS caches, as well as reclaimable slab objects such as

dentries and inodes between workload iterations [47]. We employ a page size of 4 KB.

To better analyze the impact of the proposed approach to map semantically equivalent objects, in

addition to the unmodified baseline, we compare with related work [4] and we evaluate 5 different

ordering strategies:

(1) Code (code for short): This strategy corresponds to the cu code-ordering strategy proposed in

related work and is useful to compare the impact of code-ordering and heap-ordering alone.

(2) Exact+Object Values+Partial (heap for short): In this strategy, we order the heap using exact and

partial matching on CAHPs that contain object values. This strategy is useful to understand the

impact of heap-ordering alone.

(3) Code+Exact (exact for short): In this strategy, we order both code and heap. The heap is ordered

employing only exact matching, and CAHPs do not contain object values.

(4) Code+Exact+Object Values (object values for short): This strategy is similar to exact except

for CAHPs that contain object values. This strategy is useful to validate that including object

values increases performance.

(5) Code+Exact+Object Values+Partial (code+heap for short): This strategy has all the features

presented in this article and the code ordering proposed by related work. This is the strategy

that one would like to release in production.

For each strategy (including the unmodified baseline) and workload, we build 3 images. For

each image, we run 33 iterations to measure page faults and 33 iterations to measure the end-

to-end execution time (for AWFY, using perf) and the elapsed time until the first response (for

microservices). To report the elapsed time until the first response, we 1) obtain the start timestamp,

2) run the microservice workload in parallel, 3) continuously ping the microservice endpoint using

curl until receiving a response, 4) obtain the end timestamp, and 5) kill the microservice workload.

The elapsed time is computed by subtracting the end and start timestamps. An iteration is a single

execution of the workload in a separate process. To determine page-fault reductions, we first trace

page faults by executing the command “perf trace -F all – <benchmark_command>” and then we

process the trace to count the page faults caused by the Native-Image binary, in particular to the

.text and .svm_heap sections. In both cases, we compute the average of all the measurements.

To show that the proposed technique does not impair performance of async/batch workloads

where startup performance is not crucial and the startup time is very short w.r.t. steady-state

execution time, we evaluate page-fault reductions and (end-to-end) execution-time speedups of

strategy code+heap on the DaCapo [6] and Renaissance [40] benchmark suites. In particular, we run

all the DaCapo and Renaissance benchmarks that Native Image supports in our evaluation settings—

Native Image does not support Apache Spark benchmarks [33, 35, 55]. We build 3 native images,

and for each image, we run 10 iterations to measure page faults and 10 iterations to measure the end-

to-end execution time. We note that optimizing DaCapo and Renaissance benchmarks that run for

several seconds is not the aim of this article, and we expect no slowdown nor speedup—Serverless

and FaaS workloads are typically short REST APIs that run for a few dozen milliseconds [10, 15, 46].

All figures (except those in §6.4, Appendix E, and Appendix F) report factors computed as

𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 , where𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the averagemeasurement obtained on the unmodified

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:18 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

helidon kto
r

micro
naut

play-sc
ala

quarku
s

spring
vertx

vanilla
1

1.5

2

2.5

3

3.5

4

Pa
ge

-Fa
ul

t R
ed

uc
tio

n

 1
.3

3×

 1
.2

6×

 1
.2

4×

 1
.2

8×

 1
.2

8×

 1
.3

2×

 1
.3

1×

 1
.3

0×

 1
.3

2×

 1
.3

4×

 1
.3

0×

 1
.3

1×

 1
.3

0×

 1
.3

4×

 1
.2

5×

 1
.3

3×

 1
.2

8× 1
.4

0×

 1
.3

4×

 1
.3

7×

 1
.3

4×

 1
.3

2×

 1
.7

2×

 1
.6

3×

 1
.7

1×

 1
.6

0× 1
.7

3×

 1
.7

6×

 1
.7

2×

 1
.7

2×

 1
.7

8×

 1
.7

2×

 1
.8

3×

 1
.8

0×

 1
.7

2×

 1
.7

5×

 1
.5

9× 1
.7

1×

 1
.5

0×

 1
.5

1×

 1
.6

3×

 1
.4

7× 1
.6

9×

 1
.6

4×

 2
.8

8×

 2
.4

6×

 2
.8

9×

 2
.5

7× 2
.8

9× 3
.0

4×

 3
.0

2×

 2
.8

4×

 3
.2

0×

 3
.0

0× 3
.1

9×

 3
.0

3×

 2
.9

4×

 3
.0

4×

 2
.1

2× 2
.4

1×

 2
.0

7×

 1
.9

5×

 2
.6

3×

 2
.0

0×

 2
.4

4×

 2
.5

5×

 3
.0

0×

 2
.9

1×

 2
.9

8×

 2
.7

8× 2
.9

6× 3
.1

1×

 2
.9

9×

 2
.9

2× 3
.0

6×

 3
.1

1×

 3
.1

8×

 3
.0

5×

 2
.9

4×

 3
.0

1×

 2
.3

5×

 3
.0

4×

 2
.3

9×

 2
.4

0×

 2
.9

2×

 2
.2

3×

 2
.8

5×

 2
.3

7×

 3
.0

9×

 2
.9

8× 3
.1

4×

 2
.9

4× 3
.1

4×

 3
.2

1×

 3
.1

4×

 3
.1

0×

 3
.2

1×

 3
.2

5×

 3
.3

6×

 3
.2

1×

 3
.0

7×

 3
.1

8×

 2
.5

7×

 3
.1

0×

 2
.4

6× 2
.5

8×

 2
.9

9×

 2
.3

6×

 2
.9

6×

 2
.9

0×

code heap exact object values code+heap

Fig. 9. Page-fault reduction achieved by the ordering strategies.

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

helidon kto
r

micro
naut

play-sc
ala

quarku
s

spring
vertx

vanilla

1

2

3

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

 1
0.

78
m

s

 1
1.

88
m

s

 1
1.

80
m

s

 3
00

.6
8m

s

 1
5.

05
m

s

 1
1.

55
m

s

 1
1.

57
m

s

 1
2.

00
m

s

 1
1.

88
m

s

 1
2.

41
m

s

 1
3.

50
m

s

 1
2.

23
m

s

 1
2.

51
m

s

 1
1.

75
m

s

 3
1.

54
m

s

 3
8.

24
m

s

 5
2.

06
m

s

 1
35

.7
0m

s

 3
3.

06
m

s

 8
8.

02
m

s

 3
7.

23
m

s

 1
3.

71
m

s

 1
0.

21
m

s

 1
0.

37
m

s

 1
0.

69
m

s

 3
29

.4
4m

s

 1
2.

73
m

s

 1
0.

73
m

s

 1
0.

43
m

s

 1
0.

30
m

s

 9
.9

3m
s

 1
0.

80
m

s

 1
1.

79
m

s

 1
0.

87
m

s

 1
0.

43
m

s

 1
1.

04
m

s

 3
5.

42
m

s

 4
8.

70
m

s

 5
5.

45
m

s

 1
67

.5
0m

s

 4
2.

41
m

s

 1
04

.5
7m

s

 4
5.

16
m

s

 1
8.

32
m

s

 7
.0

0m
s

 7
.6

9m
s

 7
.2

7m
s

 3
20

.4
8m

s

 9
.5

2m
s

 6
.8

7m
s

 6
.4

2m
s

 7
.1

0m
s

 6
.6

5m
s

 7
.1

5m
s

 7
.8

8m
s

 7
.5

5m
s

 7
.5

4m
s

 6
.8

3m
s

 2
6.

74
m

s

 2
9.

70
m

s

 4
0.

64
m

s

 3
59

.8
5m

s 2
7.

27
m

s

 7
6.

00
m

s

 3
3.

81
m

s

 1
4.

85
m

s

 6
.8

1m
s

 7
.2

8m
s

 7
.0

9m
s

 3
21

.5
7m

s

 1
0.

32
m

s

 7
.2

5m
s

 8
.0

5m
s

 7
.4

9m
s

 8
.0

6m
s

 7
.5

4m
s

 8
.6

2m
s

 7
.0

0m
s

 7
.4

5m
s

 7
.6

8m
s

 2
6.

37
m

s

 2
9.

46
m

s

 3
7.

90
m

s

 1
30

.4
6m

s

 2
6.

55
m

s

 7
8.

29
m

s

 3
0.

76
m

s

 1
4.

73
m

s

 6
.6

2m
s

 7
.1

4m
s

 7
.1

7m
s

 3
22

.0
2m

s

 9
.2

7m
s

 6
.3

0m
s

 6
.8

5m
s

 6
.5

5m
s

 7
.4

0m
s

 6
.8

2m
s

 8
.3

9m
s

 7
.0

4m
s

 7
.0

0m
s

 7
.1

4m
s

 2
5.

83
m

s

 2
3.

40
m

s

 3
5.

28
m

s

 1
17

.9
3m

s

 2
3.

90
m

s

 7
4.

80
m

s

 2
5.

65
m

s

 9
.7

2m
s

Fig. 10. Execution-time speedup achieved by the ordering strategies.

Bounce CD

DeltaBlue
Havlak

JsonList

Mandelbrot
NBody

Permute
Queens

Richards
Sieve
Storage

Towers
helidonkto

r

micro
naut

play-sc
ala

quarku
s

spring
vertx

vanilla
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Pa
ge

-Fa
ul

t R
ed

uc
tio

n

 1
.2

4×
 1

.1
7×

 1
.2

7×
 1

.2
1×

 1
.2

1×
 1

.2
4×

 1
.2

5×
 1

.2
2×

 1
.2

3×
 1

.2
5×

 1
.2

5×
 1

.2
3× 1
.2

7×
 1

.2
6×

 1
.2

3×
 1

.1
6×

 1
.1

2×
 1

.3
3×

 1
.1

6×
 1

.1
6×

 1
.1

8×
 1

.1
8×

 1
.6

8×
 1

.4
7×

 1
.6

2×
 1

.7
8×

 1
.6

2× 1
.6

5×
 1

.6
7×

 1
.6

1× 1
.6

9×
 1

.7
1×

 1
.6

2× 1
.6

6×
 1

.6
9×

 1
.6

9×
 1

.4
2× 1

.4
7×

 1
.3

4×
 1

.5
8×

 1
.6

0×
 1

.4
7× 1
.5

1×
 1

.4
1×

heap path cu+heap path

Fig. 11. Page-fault reduction achieved by related work.

Bounce CD

DeltaBlue
Havlak

JsonList

Mandelbrot
NBody

Permute
Queens

Richards
Sieve
Storage

Towers
helidonkto

r

micro
naut

play-sc
ala

quarku
s

spring
vertx

vanilla
0.8

1

1.2

1.4

1.6

1.8

2

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

 1
1.

02
m

s
 1

1.
62

m
s

 1
0.

94
m

s
 3

25
.5

9m
s

 1
3.

66
m

s
 1

0.
89

m
s

 1
1.

06
m

s
 1

0.
83

m
s

 1
1.

19
m

s
 1

1.
08

m
s

 1
1.

84
m

s
 1

1.
29

m
s

 1
1.

40
m

s
 1

1.
03

m
s

 3
6.

63
m

s
 4

9.
94

m
s

 6
5.

17
m

s 1
49

.0
8m

s
 3

9.
49

m
s

 1
05

.7
8m

s
 4

6.
82

m
s

 1
8.

31
m

s

 7
.1

5m
s

 8
.5

4m
s

 7
.8

0m
s

 3
20

.1
7m

s
 1

0.
30

m
s 7

.1
5m

s
 7

.1
0m

s
 7

.3
1m

s
 7

.2
9m

s
 7

.1
8m

s
 8

.9
5m

s
 7

.2
7m

s
 7

.4
5m

s
 7

.3
6m

s
 2

7.
25

m
s

 3
5.

55
m

s
 4

7.
11

m
s

 1
27

.2
1m

s 2
4.

12
m

s
 7

9.
10

m
s

 3
2.

94
m

s
 1

3.
23

m
s

Fig. 12. Execution-time speedup achieved by related
work.

Native Image and 𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 refers to the one obtained using one of our evaluated techniques

(higher is better). First, we report the AWFY benchmarks (capitalized), then the workloads that

employ microservices (lowercase), and finally vanilla. Above each bar, we report the exact factor,

except for figures reporting execution-time speedups where we report the absolute execution time

in milliseconds. The yellow error bars represent 95% confidence intervals (CI) of the measurements.

6.2 Page-Fault Reduction
Fig. 9 shows the page-fault-reduction factors for the evaluated ordering strategies. Experimental

results show that heap reduces more page faults than code with average reduction factors of 1.67×
and 1.31×, respectively. This confirms the importance of ordering heap snapshots and matching

objects. Page-fault reduction for code ranges from 1.24× (DeltaBlue) to 1.40× (play-scala), while
factors for heap range from 1.46× (spring) to 1.83× (Richards). While reduction factors associated

with code ordering are similar on AWFY and microservices, factors associated with heap ordering

are slightly lower on microservices than AWFY. Strategies exact, object values, and code+heap

show that code and heap ordering are synergistic, with average reduction factors of 2.65×, 2.82×,
and 2.98×. The reason is that, in Native Image, metadata stored in the heap is affected by code

ordering. Similar to the heap strategy, combined code- and heap-ordering reduction factors are

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:19

h2
jython

luindex
lusearchpmd

xalan
akka

-uct

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

mnemonics

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Pa
ge

-Fa
ul

t R
ed

uc
tio

n

 1
.2

3×
 1

.5
2×

 1
.6

1×
 1

.6
0×

 1
.5

4×
 1

.6
1× 1

.8
0×

 1
.8

7× 2
.0

2×
 2

.4
1×

 1
.9

8×
 1

.8
8× 1
.9

9×
 1

.9
2×

 1
.6

5× 1
.8

0×
 1

.8
8×

 2
.6

1×
 1

.9
2×

 1
.7

7×

code+heap

Fig. 13. Page-fault reduction achieved by strategy
code+heap on DaCapo and Renaissance.

h2
jython

luindex
lusearchpmd

xalan
akka

-uct

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

mnemonics

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble

1

1.1

1.2

1.3

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

 4
06

96
.4

3m
s 3

65
45

.9
2m

s
 1

99
23

.2
5m

s
 3

52
1.

79
m

s
 3

71
99

.7
2m

s
 1

72
4.

88
m

s
 3

33
31

.9
3m

s
 9

95
7.

50
m

s
 5

62
7.

07
m

s
 1

11
86

.6
0m

s
 2

79
3.

31
m

s
 1

15
62

.1
8m

s
 9

90
9.

80
m

s
 3

67
3.

40
m

s
 3

72
12

.3
4m

s
 2

05
3.

60
m

s
 5

99
2.

83
m

s
 9

80
.7

5m
s

 6
02

4.
22

m
s

 2
20

3.
74

m
s

Fig. 14. Execution-time speedup achieved by strategy
code+heap on DaCapo and Renaissance.

slightly lower on microservices than AWFY. Results for object values show that Object Values
elements of CAHPs are effective in reducing page faults, as object values has higher reductions

than exact. Among all the evaluated workloads, exact performs better than object values only on

Mandelbrot, Permute, Richards, Towers, and vanilla. Strategy code+heap yields the largest page-fault
reduction on all the evaluated workloads, 2.98× on average. The biggest improvement w.r.t. object

values is on vanilla (1.22×). Results show that partial matching is effective in reducing page faults,

indicating that it successfully matches and orders objects that are not matched by exact matching

due to divergences between image builds. Table 2. Geomean of the page-fault reduction factors
and execution-time speedups achieved by the best or-
dering strategies of this article (code+heap) and re-
lated work (cu+heap path), divided by benchmark
suite.

Metric Strategy AWFY Microservices Overall
page-fault code+heap 3.14 2.72 2.98

reduction cu+heap path 1.65 1.47 1.58

execution-time code+heap 2.00 1.92 1.98

speedup cu+heap path 1.59 1.58 1.58

6.2.1 Comparison with Related Work. Fig. 11
shows the page-fault-reduction factors achieved

by related work. Table 2 reports the geomet-

ric mean of the two best-performing ordering

strategies code+heap (proposed by us) and

cu+heap path (proposed by related work). We

remark that heap path orders only the heap

section (and hence can be compared with our

strategy strategyheap) while cu+heap path orders both the code and heap sections (and hence can

be compared with our strategy code+heap). Experimental results show that our heap strategy

reduces an average of 1.67× page faults, while heap path reduces page faults by 1.21× on average.

Moreover, our code+heap strategy outperforms cu+heap path, with reduction factors of 2.98×
and 1.58×, respectively. Overall, our ordering strategies yield higher reduction factors than related

work on all the workloads.

6.2.2 Evaluation on DaCapo and Renaissance. Fig. 13 shows the page-fault-reduction factors

achieved by strategy code+heap on DaCapo and Renaissance. Experimental results show page-

fault-reduction factors ranging from 1.23× to 2.61×, 1.81× on average. We notice that page fault

reductions associated with these workloads are lower than the ones reported in Fig. 9 due to the

different usage of libraries and static initializations.

6.3 Execution-Time Speedup
Fig. 10 reports the speedup achieved by the evaluated ordering strategies, which correlate with

the page-fault reduction reported in §6.2, with an average factor of 1.30×, 1.30×, 1.75×, 1.80×,
and 1.98× for code, heap, exact, object values, and code+heap, respectively. This correlation

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:20 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Bounce CD

DeltaBlue
Havlak

Json List

Mandelbrot
NBody

Permute
Queens

Richards
Sieve

Storage
Towers

helidon kto
r

micro
naut

play-sc
ala

quarku
s

spring
vertx

vanilla
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Bu
ild

-T
im

e
Ov

er
he

ad

 1
.0

6×

 1
.0

7×

 1
.0

7×

 1
.0

5× 1
.0

7×

 1
.0

7×

 1
.0

8×

 1
.0

5× 1
.0

6×

 1
.0

6×

 1
.0

5× 1
.0

7×

 1
.0

6×

 1
.0

7× 1
.1

0×

 1
.1

5×

 1
.2

5×

 1
.2

5×

 1
.1

9×

 1
.1

9×

 1
.1

6×

 1
.0

7×

 1
.1

2×

 1
.1

2×

 1
.1

3×

 1
.1

2×

 1
.1

2×

 1
.1

2×

 1
.1

3×

 1
.1

2×

 1
.1

2×

 1
.1

1×

 1
.1

1× 1
.1

4×

 1
.1

2× 1
.1

2× 1
.1

5×

 1
.1

9×

 1
.2

4× 1
.2

6×

 1
.2

2×

 1
.2

2×

 1
.1

7×

 1
.1

2×

 1
.1

2×

 1
.1

2×

 1
.1

2×

 1
.1

1×

 1
.1

2×

 1
.1

1× 1
.1

3×

 1
.1

1×

 1
.1

2×

 1
.1

1×

 1
.1

1×

 1
.1

2×

 1
.1

1×

 1
.1

1×

 1
.1

7× 1
.2

0×

 1
.2

7× 1
.3

1×

 1
.2

4×

 1
.2

5×

 1
.2

0×

 1
.1

2×

 1
.1

6×

 1
.1

6×

 1
.1

6×

 1
.1

5×

 1
.1

5×

 1
.1

5×

 1
.1

6×

 1
.1

5×

 1
.1

6×

 1
.1

4×

 1
.1

4× 1
.1

6×

 1
.1

5×

 1
.1

4× 1
.1

9×

 1
.2

4×

 1
.3

3×

 1
.3

3×

 1
.2

8×

 1
.2

9×

 1
.2

3×

 1
.1

6× 1
.1

7×

 1
.1

6×

 1
.1

7×

 1
.1

6× 1
.1

6×

 1
.1

7×

 1
.1

7×

 1
.1

6×

 1
.1

7×

 1
.1

6×

 1
.1

6×

 1
.1

7×

 1
.1

5×

 1
.1

6× 1
.1

9×

 1
.2

5×

 1
.3

5×

 1
.3

2×

 1
.3

0×

 1
.2

8×

 1
.2

6×

 1
.1

8×

code heap exact object values code+heap

Fig. 15. Build-time overhead introduced by the ordering strategies.

indicates that page faults have a high impact on the execution time of Serverless and FaaS workloads.

On AWFY, heap introduces higher speedups than code while on microservices code introduces

higher speedups than heap. The maximum speedup is achieved by code+heap on workload ktor
(2.52×), while exact introduces a slowdown of 0.51× on play-scala. We are currently investigating

the reasons for this slowdown. Strategy object values solves the slowdown on play-scala by

introducing a speedup of 1.41×. Overall, code+heap introduces higher speedups with an average

of 1.98×, confirming that code and heap ordering are synergistic.

6.3.1 Comparison with Related Work. Fig. 12 and Table 2 show the execution-time speedups

achieved by the ordering strategies proposed by related work and the geometric means of the

best performing strategies, respectively. Our heap strategy outperforms heap path, showing

factors of 1.30× and 1.12×, respectively, while our code+heap yields better performance than

cu+heap path, with factors 1.98× and 1.58×, respectively. Our code+heap strategy introduces

higher speedups than related work on all the evaluated workloads, showing the effectiveness of

the proposed approach.

6.3.2 Evaluation on DaCapo and Renaissance. Fig. 14 shows the execution-time speedups achieved

by strategy code+heap on DaCapo and Renaissance. Experimental results show execution-time

speedups ranging from 0.99× to 1.12×, 1.03× on average. As mentioned in §6.1, this is expected

since DaCapo and Renaissance consist of async/batch, not startup-oriented, workloads that run for

several seconds, where startup performance is not crucial and the startup time is very short w.r.t.

steady-state execution time. We report the absolute execution-time numbers in Appendix E.

6.4 Build-Time Overhead
Fig. 15 reports the build-time overhead of our ordering strategies (lower is better). In the case

of the baseline, the build time includes the time required to build the Native-Image binary by

performing the steps represented by the white nodes in Fig. 2. In the case of optimized binaries, the

build time includes also the steps represented by green and purple nodes in Fig. 2 and the time

required to fetch and parse profiles stored in files. Experimental results show that heap ordering

alone (heap) introduces an average build-time overhead of 1.14×, Strategies exact, object values,

and code+heap that order both code and heap introduce average build time factors of 1.15×,
1.18×, and 1.19×, respectively. Overall, the proposed approach for heap ordering incurs a moderate

overhead. Moreover, object values and partial matching do not introduce significantly higher

slowdowns w.r.t. exact matching alone—code+heap introduces an average build-time overhead of

1.03× w.r.t. exact. The build-time overhead does not depend on the number of ordered objects

(as later shown in §6.5) but rather on the object-matching process. We note that the overhead of

partial-path matching depends on the heap-snapshot size and the number of exactly-unmatched

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:21

Table 4. Ordering statistics for the evaluated strategies on microservice frameworks.

Strategy Workload # Profiled
IDs

Exactly-
Matched
Ordered
Objects

Partially-
Matched
Ordered
Objects

Strategy Workload # Profiled
IDs

Exactly-
Matched
Ordered
Objects

Partially-
Matched
Ordered
Objects

heap helidon 7588 14318 174 exact helidon 5978 59896 0

ktor 9448 12470 182 ktor 7698 96059 0

micronaut 19938 31205 298 micronaut 17446 111940 0

play-scala 37622 50805 562 play-scala 26885 156328 0

quarkus 7003 11330 497 quarkus 5656 64817 0

spring 34602 50931 1265 spring 27179 148236 0

vertx 7718 13291 295 vertx 6406 77238 0

vanilla 2791 6584 496 vanilla 2446 19966 0

object values helidon 7588 14619 0 code+heap helidon 7492 14222 146

ktor 9447 12455 0 ktor 9445 12494 132

micronaut 19941 31045 0 micronaut 19933 31013 319

play-scala 33112 43534 0 play-scala 33156 43485 495

quarkus 6992 11357 0 quarkus 6989 11328 476

spring 34704 51641 0 spring 34756 50779 1171

vertx 7710 13330 0 vertx 7723 12705 975

vanilla 2791 6350 0 vanilla 2788 6313 338

objects (the latter is small for the evaluated workloads). In the case of a high number of exactly-

unmatched objects, it is possible to create a suffix tree to find a match while tracking the best score.

Each partial-path match would have the complexity of the longest path in the image heap. AWFY

benchmarks are associated with lower overheads than microservices, since the latter include more

code and larger heap snapshots. We remark that the build time is often not critical—build time is

not what would eventually break the SLA. For space reasons, we report the build-time overhead on

DaCapo and Renaissance in Appendix F.

6.5 Object-Ordering Statistics
Table 3. Object statistics for the evaluated
strategies on microservice frameworks.

Workload
Objects in

Heap
Snapshot

Accessed
Objects

% Accessed
Objects

helidon 236130 8237 3.49

ktor 331766 10144 3.06

micronaut 394170 24680 6.26

play-scala 438096 35145 8.02

quarkus 277303 8494 3.06

spring 410939 38226 9.30

vertx 312050 8314 2.66

vanilla 138452 2997 2.16

Here, we analyze heap-ordering statistics collected on

microservices, to explain the effects of the evaluated or-

dering strategies. We focus on microservices since these

workloads include bigger heap snapshots, which better

illustrate the effects of the evaluated strategies.

Table 3 reports the number of objects in the heap snap-

shot and the amount of accessed objects per workload.

These numbers do not change based on the strategy. As

the table shows, only a small percentage of the objects in the snapshot is accessed at runtime (5.4%

on average), which indicates the importance of ordering/compacting objects according to their

access order to reduce page faults.

For each heap-ordering strategy, Table 4 reports statistics related to object-access profiling,

object matching, and ordering. In particular, the table reports the number of profiled IDs (i.e., the

accessed-object count according to the heap-ordering profiles collected during the execution of the

instrumented image and used at optimized-image build time), of exactly-matched ordered objects

and of partially-matched-ordered objects in the optimized image. The values are the arithmetic

means across all optimized-image builds of the respective workload.

Profiling and Collisions. The table shows that the number of profiled IDs varies among the

strategies. The reason is that different strategies lead to different numbers of collisions—even in the

case where the application accesses the same objects when using different strategies, each strategy

assigns a different number of objects to the same ID (and hence the same CAHP as described in

§4.1.2). The lower number of profiled IDs associated with exact shows that many objects in this

strategy have the same IDs. This is expected since, without array indices and object values in

CAHPs, all the objects of the same type stored in the same array obtain the same ID. Object values

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:22 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

mitigate this issue as demonstrated by the statistics for object values. The heap strategy usually

profiles slightly more IDs than code+heap, i.e., the corresponding strategy that also employs code

ordering. The number of profiled IDs is lower than the one of accessed objects reported in Table 3

for all evaluated strategies, indicating that collisions are present for every strategy.

(a) Not
optimized.

(b) Related
work.

(c) Our strategy.

Fig. 16. Heap section of the play-scala workload and
the corresponding page faults.

Ordering and Collisions. The number

of exactly-matched ordered objects is higher

than the number of profiled objects, which is

expected—some optimized heap-snapshot objects

that are not accessed have the same IDs as ob-

jects that were accessed. Furthermore, the exactly-

matched ordered-objects column confirms that

exact assigns the same ID to considerably more

objects than other strategies—despite the low

number of profiled IDs, we order more exactly-

matched objects than other strategies. The num-

ber of partially-matched ordered objects is similar

for both the strategies that exploit partial match-

ing. We can notice that partial matching orders

only a few objects. However, the page-fault reduc-

tion factors reported in §6.2 indicate that these

objects are correctly matched, ordered, and then

accessed at runtime, showing the effectiveness

of partial matching. The sum of the exactly- and

partially-matched ordered objects is higher than

the number of accessed objects for all workloads

and strategies. This indicates that every strategy

orders objects that are not accessed at runtime

due to ID collisions. However, the relative error,

i.e., the number of objects that we order and that

are not accessed at runtime, is small w.r.t. the to-

tal number of objects stored in the heap snapshot.

Despite this, the ordering techniques overall im-

prove performance by reducing page faults, and

this confirms the results from §6.2 and §6.3.

7 Optimized-Heap-Snapshot
Visualization and Analysis
This section provides a visualization and an anal-

ysis of the heap section of an optimized image. To

perform the analysis, we exploit the debugging

information collected following the methodology

described in §4. In particular, we identify the objects causing page faults and we inspect their

CAHPs. The CAHPs allow us to determine the type of the objects as well as their semantics (e.g.,

we identify interned strings, objects storing metadata, and objects created by application code).

During development, we employed this information and analysis methodology to determine what

object-context information to include in the CAHPs and tune exact and partial matching.

Fig. 16a, Fig. 16b, and Fig. 16c show the .svm_heap section of a regular image (generated without

applying any strategy proposed by related work), an image generated by related work [4], and an

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:23

optimized image generated by our approach for workload play-scala, respectively. We use play-scala
since it is the workload with the highest number of objects in the heap snapshot (as shown in

Table 3) and shows interesting insights. The figures use the same format of Fig. 1a and 1b (explained

in §1), with the addition of the gray cells to indicate pages that have not been paged in by the OS and

contain objects that have been ordered. Since a small percentage of the objects in the heap snapshot

is accessed at runtime, a small percentage of objects is ordered (as shown in §6.5)—we do not expect

the heap to be predominantly gray. The page size is 4KB. Page faults (green cells) surrounded by

gray cells indicate page faults caused by ordered objects, while page faults surrounded by black cells

indicate page faults caused by unordered objects. Next to the heap section of the optimized image,

we report numbers to identify segments of that heap section for the sake of explanation. First,

Fig. 16a and 16b show that the regular image and the one generated by related work cause page

faults throughout the heap section, while Fig. 16c shows fewer more-localized page faults—accessed

objects are compacted in fewer pages, leading to performance improvements. We point out that the

ordered objects (identified by the gray regions) are not contiguous. This is because Native Image

splits the heap section in several segments (Seg.), each of them containing objects with different

properties. Seg. 1 contains read-only primitive arrays, Seg. 2 contains read-only references, Seg. 3

contains read-only relocatable objects, while Seg. 4 and 5 contain writable primitive arrays and

writable references, respectively. In the following text, we analyze each segment separately.

We divide Seg. 1 into four segments numbered from 1.1 to 1.4. Seg. 1.1 and 1.2 are ordered and

contain mostly byte arrays associated with interned strings and large byte arrays that contain

Native Image metadata, respectively. In particular, Seg. 1.2 contains four large arrays containing

method and reflection metadata that are used to e.g. create stack traces for exceptions. This explains

the large number of gray pages in this segment—this multi-page array is accessed, but only a subset

of the entires are accessed (corresponding to methods for which stack traces were created in the

image execution). Seg. 1.3 and 1.4 contain mostly byte arrays that have not been ordered and are

associated with strings and interned strings, respectively. The reason for the page faults associated

with the byte arrays of the interned strings (i.e., why we do not order several interned strings) is that

Native Image stores interned strings in a sorted array and performs a binary search at runtime when

invoking the method String.intern(). To order these interned strings, the instrumented image should

access (and profile) the strings that will be later accessed by the binary search when executing the

optimized image. However, this is not the case. The instrumented and optimized images contain

slightly different interned strings. For example, the instrumented image contains interned strings

related to the instrumentation code, such as the names of the instrumentation classes. These strings

alter the access pattern of the binary search so that the instrumented-image execution accesses

different string byte arrays w.r.t. the string byte arrays that would have been accessed by a regular

or an optimized image. Different accesses lead to inaccuracies in the profiles and consequently in

the ordering, limiting the number of objects that are reordered, and hence the page-fault reduction.

Seg. 2 contains mostly java.lang.String and java.lang.Class objects. Seg. 2.1 contains correctly
ordered objects, Seg. 2.2 contains primarily unordered (non-interned) strings, while Seg. 2.3 contains

many unordered interned strings. The cause for page faults in Seg. 2.3 is similar to that of the page

faults in Seg. 1.4, i.e., the binary search accesses both the java.lang.String wrapper object and the

byte array that this object points to. Seg. 3 contains mainly java.lang.Class objects. The gray section
in Seg. 4 is dominated by a large byte array containing reflection metadata. Seg. 5 contains most of

the objects allocated by the application, and shows the effectiveness of our ID generation—many

page faults are contiguous, indicating that many of the accessed objects are packed together. A

gap between contiguous page faults is likely caused by either (1) a large object spanning multiple

pages or (2) many objects associated with the same ID, placed one after the other. In the former,

the application accesses only some elements of this large object, while in the latter, the application

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:24 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

accesses only some of the objects associated with the same ID. Page faults outside of the gray

sections are caused by objects that have not been matched and ordered due to inaccuracies.

8 Related Work
8.1 Optimizing Heap Ordering
To the best of our knowledge, Basso et al. [4] propose the only binary-reordering technique for

Native Image. The main novelty of their work is presenting a new approach to map objects in

two different binaries built from the same application, where significant divergences in the object

graph are expected. As already discussed in §2, our approach improves the heap-ordering strategies

proposed by the above work, which result in limited startup speedups due to their poor capabilities

in mapping semantically equivalent objects across binaries (as shown in §6). Moreover, their

strategies do not perform partial matching and do not produce metadata that can be exploited for

debugging and visualization purposes, unlike our work (as detailed in §4.4 and §7). We are not

aware of any other work that proposes strategies to map semantically equivalent objects across

heap snapshots produced by different compilations.

While improving heap ordering is a common technique to increase performance, related work

apply it to optimize runtime memory allocations [8, 14, 17, 22]; in contrast, our goal is to improve

the ordering of objects stored in a heap snapshot embedded in a binary. Other approaches optimize

the data-layout to improve locality [18, 42, 49]. Finally, a few work exploit PGO (as we do) to

optimize the heap layout [28, 31, 44]. However, none of these approaches proposes techniques for

matching corresponding objects across compilations, which is our goal.

Finally, several strategies proposed by related work attempt to compute a one-to-one node

mapping between two graphs [7, 9, 13, 16, 24, 53] Unfortunately, none of these strategies is designed

to consider the peculiarities of the heap-object graphs and the divergences across builds. For example,

the two nodes corresponding to the semantically equivalent objects may be connected differently

in the two graphs. In our work, we employ domain knowledge to guide the matching algorithm,

showing that matching can be effectively performed not only by considering the graph structure

but also the object content (i.e., constructing CAHPs using elements of type Object Value).

8.2 Improving Startup Performance
Optimizing the binary layout to reduce page faults has been explored in recent research [20, 23].

However, such techniques focus on code reordering; instead, our approach aims at improving object

reordering. It should be noted that the above work attempt to reduce page faults by reducing the

binary size. Such strategies are only partly suitable for Native Image, where the majority of the

binary (typically ∼60%) is occupied by the heap snapshot.

Due to the growing diffusion of Serverless and FaaS, modern research is increasingly prioritizing

the optimization of startup performance, focusing both on improving the execution of interpreted

code [3, 38] and reducing the startup time of the dynamic compiler [2, 27, 36, 52]. Moreover, modern

implementations of managed runtimes offer ways to pre-initialize the execution context [50, 54],

aiming at shortening the initialization time of the runtime. Finally, some work specifically focus

on optimizing startup performance of Serverless and FaaS workloads [1, 25]. These work are

complimentary to our approach and show that optimizing startup performance is a timely and

important research topic.

9 Discussion
Alternative and Complementary Approaches. As an alternative approach, instead of building

an instrumented and an optimized binary, one could 1) profile the execution of one binary to track

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

Heap-Snapshot Matching and Ordering using CAHPs... 325:25

the executed code and accessed objects, and 2) use the collected profiles to re-layout the same binary.

This strategy removes the need to perform object-matching, potentially leading to optimal locality

and startup performance. However, this alternative approach incurs different challenges. First,

when building the binary, one needs to dump additional metadata that is later required to relocate

objects, patch references between objects and references embedded in the code. Second, to profile

the binary without incurring prohibitive overhead, one would need hardware support for tracing

accessed memory addresses. We are not aware of such hardware capabilities. Our approach reduces

overhead by instrumenting only memory accesses corresponding to object accesses (Appendix A.1).

We consider exploring this alternative approach an interesting future work.

To reduce the impact of page faults, one could employ prefetching strategies to preemptively

load the pages containing the profiled code and objects into memory. Since our approach reduces

the number of pages to (pre)fetch by compacting the accessed objects in fewer contiguous pages,

we consider prefetching complementary to our approach.

Limitations. Themain limitation of our approach is that we assume that most of the semantically

different objects are not associated with the same CAHP, which may introduce inaccuracies. The

instrumentation code introduces some degree of inaccuracy in object matching as well. In addition

to the perturbation introduced by the instrumentation code on the binary search on interned strings

(explained in §7), instrumentation code may allocate objects that are not present in the optimized

image, such as metadata associated with instrumentation classes, which is stored in maps included

in the heap snapshot. The inclusion of this metadata may lead to collisions in maps allocated in the

instrumented image and hence to the allocation of additional buckets (used internally by the map)

that are not present in the optimized image. Additional map nodes in turn lead to the computation

of different CAHPs for semantically equivalent objects between the instrumented and optimized

image. Our approach mitigates this issue by performing partial path matching. The divergence

of heap snapshots is not a direct limitation of our work, but a limitation of any object-matching

technique that relies on Native Image and implements instrumentation logic in Java bytecode.

Furthermore, our object-ordering approach may introduce false positives (i.e. objects that are

reordered, but not accessed in the optimized execution), as discussed in §6.5. Despite the presence

of false positives, experimental results show significant page-fault reductions and considerable

performance improvements w.r.t. to the default Native Image implementation and related work.

10 Concluding Remarks
In this article, we propose a novel approach to improve themapping between semantically equivalent

objects of two different binaries generated by GraalVM Native Image on the same application. Our

approach aims at improving the efficiency (in terms of page-fault and startup-time reduction) of

profile-guided approaches that reorder objects in the heap snapshot of an optimized binary based

on the order in which objects are first accessed, obtained by profiling an instrumented binary

of the same application. We propose to associate each object to be stored in the heap snapshot

with a Context-Augmented Heap Path (CAHP), and consider objects with the same CAHP across

different binaries as semantically equivalent. Moreover, since non-determinism in the image-build

process may lead to different CAHPs for semantically equivalent objects, we present an approach

that further improves the accuracy of object-matching, finding for each unmatched CAHP in the

optimized binary, the most similar CAHP in the instrumented binary, associating the two objects.

We integrate our approach in Native Image and evaluate it on FaaS benchmarks as well as on

widely-used microservice frameworks, obtaining an average reduction of page faults of 2.98× and

an average startup speedup of 1.98× w.r.t. the original Native Image implementation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

325:26 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Data-Availability Statement
The artifact [5] consists of a ready-to-use Docker image embedding our profiler as well as our

modified GraalVM to generate optimized Native-Image binaries that reduce I/O traffic by changing

their layout during compilation. The artifact contains a set of tools/scripts that can be used to

execute the workloads, collect, process, and plot page-fault and performance measurements to

replicate the evaluation presented in the article. The artifact also contains the complete pre-collected

measurements used to generate the original figures of the article.

Acknowledgments
This work has been supported by Oracle ("Dynamic Regression-Detection and Compiler Analysis

Framework for GraalVM", ID 5161), by the Swiss National Science Foundation, and by the USI FIR

project "Understanding and Mitigating Performance Variability on Managed Runtimes". We thank

the VM Research Group at Oracle Labs for their support. Oracle, Java, and HotSpot are trademarks

of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

References
[1] Amazon Web Services - Labs. 2025. LLRT GitHub Repository. https://github.com/awslabs/llrt

[2] Matthew Arnold, Adam Welc, and V. T. Rajan. 2005. Improving Virtual Machine Performance Using a Cross-Run

Profile Repository. In OOPSLA. 297–311. doi:10.1145/1094811.1094835
[3] Matteo Basso, Daniele Bonetta, and Walter Binder. 2023. Automatically Generated Supernodes for AST Interpreters

Improve Virtual-Machine Performance. In GPCE. 1–13. doi:10.1145/3624007.3624050
[4] Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder. 2025. Improving Native-Image Startup Perfor-

mance. In CGO. 689–703.
[5] Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder. 2025. Artifact associated to the paper "Heap-

Snapshot Matching and Ordering using CAHPs: A Context-Augmented Heap-Path Representation for Exact and Partial

Path Matching using Prefix Trees" published in OOPSLA’25. doi:10.5281/zenodo.16522289 artifact.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D.

von Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis

(OOPSLA’06). 169–190.
[7] Tibério S. Caetano, Julian J. McAuley, Li Cheng, Quoc V. Le, and Alex J. Smola. 2009. Learning Graph Matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence 31, 6 (2009), 1048–1058.
[8] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-Conscious Data Placement. In ASPLOS.

139–149. doi:10.1145/291006.291036

[9] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. 2010. Reweighted Random Walks for Graph Matching (ECCV’10).
492–505.

[10] Du, Dong and Yu, Tianyi and Xia, Yubin and Zang, Binyu and Yan, Guanglu and Qin, Chenggang and Wu, Qixuan

and Chen, Haibo. 2020. Catalyzer: Sub-millisecond Startup for Serverless Computing with Initialization-less Booting

(ASPLOS’20). 467–481.
[11] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck.

2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler. In VMIL. 1–10. doi:10.
1145/2542142.2542143

[12] Eclipse. 2025. Vert.x Framework. https://vertx.io/

[13] Amir Egozi, Yosi Keller, and Hugo Guterman. 2013. A Probabilistic Approach to Spectral Graph Matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 18–27.

[14] Yi Feng and Emery D. Berger. 2005. A Locality-improving Dynamic Memory Allocator. In MSP. 68–77. doi:10.1145/
1111583.1111594

[15] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless Computing Alive with Greedy-Dual

Caching. In ASPLOS. 386–400. doi:10.1145/3445814.3446757
[16] S. Gold and A. Rangarajan. 1996. A graduated Assignment Algorithm for Graph Matching. IEEE Transactions on Pattern

Analysis and Machine Intelligence 18, 4 (1996), 377–388.
[17] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. 1993. Improving the Cache Locality of Memory Allocation. In

PLDI. 177–186. doi:10.1145/173262.155107

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

https://github.com/awslabs/llrt
https://doi.org/10.1145/1094811.1094835
https://doi.org/10.1145/3624007.3624050
https://doi.org/10.5281/zenodo.16522289
https://doi.org/10.1145/291006.291036
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2542142.2542143
https://vertx.io/
https://doi.org/10.1145/1111583.1111594
https://doi.org/10.1145/1111583.1111594
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/173262.155107

Heap-Snapshot Matching and Ordering using CAHPs... 325:27

[18] Christopher Haine, Olivier Aumage, and Denis Barthou. 2017. Rewriting System for Profile-Guided Data Layout

Transformations on Binaries. In Euro-Par. 260–272. doi:10.1007/978-3-319-64203-1_19
[19] Michael Hind. 2001. Pointer Analysis: Haven’t We Solved This Problem Yet?. In PASTE. 54–61.
[20] Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev. 2023. Optimizing Function Layout for Mobile Applica-

tions. In LCTES. 52–63. doi:10.1145/3589610.3596277
[21] JetBrains. 2025. Ktor Framework. https://ktor.io/

[22] Alin Jula and Lawrence Rauchwerger. 2009. Two Memory Allocators that Use Hints to Improve Locality. In ISMM.

109–118. doi:10.1145/1542431.1542447

[23] Kyungwoo Lee, Ellis Hoag, and Nikolai Tillmann. 2022. Efficient Profile-guided Size Optimization for Native Mobile

Applications. In CC. 243–253. doi:10.1145/3497776.3517764
[24] Marius Leordeanu and Martial Hebert. 2009. Unsupervised Learning for Graph Matching (CVPR’09). 864–871.
[25] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi Liu, Haoyu Wang, and Xin Jin. 2023. FaaSLight:

General Application-level Cold-start Latency Optimization for Function-as-a-Service in Serverless Computing. ACM
Trans. Softw. Eng. Methodol. 32, 5, Article 119 (Jul 2023), 29 pages. doi:10.1145/3585007

[26] LLVM Project. 2025. Benchmarking Tips. https://llvm.org/docs/Benchmarking.html

[27] Zoltan Majo, Tobias Hartmann, Marcel Mohler, and Thomas R. Gross. 2017. Integrating Profile Caching into the

HotSpot Multi-Tier Compilation System. In ManLang. 105–118. doi:10.1145/3132190.3132210
[28] Chaitanya Mamatha Ananda, Rajiv Gupta, Sriraman Tallam, Han Shen, and Xinliang David Li. 2025. PreFix: Optimizing

the Performance of Heap-Intensive Applications. In CGO. 405–417. https://doi.org/10.1145/3696443.3708960

[29] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-language Compiler Benchmarking: Are We Fast

Yet?. In DLS. 120–131. doi:10.1145/2989225.2989232
[30] Micronaut Foundation. 2024. Micronaut Framework. https://micronaut.io/

[31] Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun Park, Jae W. Lee, Jung Ho Ahn, and Eojin Lee. 2022.

MaPHeA: A Framework for Lightweight Memory Hierarchy-aware Profile-guided Heap Allocation. ACM Trans. Embed.
Comput. Syst. 22, 1, Article 2 (2022). https://doi.org/10.1145/3527853

[32] Oracle and/or its affiliates. 2021. GraalVM: Native Image. https://www.graalvm.org/jdk21/reference-manual/native-

image/

[33] Oracle and/or its affiliates. 2025. DaCapoBenchmarkSuite. https://github.com/oracle/graal/blob/

1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.

py#L1000

[34] Oracle and/or its affiliates. 2025. Helidon Framework. https://helidon.io/

[35] Oracle and/or its affiliates. 2025. RenaissanceBenchmarkSuite. https://github.com/oracle/graal/blob/

1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.

py#L1988

[36] Guilherme Ottoni and Bin Liu. 2021. HHVM Jump-Start: Boosting Both Warmup and Steady-State Performance at

Scale. In CGO. 340–350. doi:10.1109/CGO51591.2021.9370314
[37] Play Framework. 2025. Play Framework. https://spring.io/

[38] Todd A. Proebsting. 1995. Optimizing an ANSI C Interpreter with Superoperators. In POPL. 322–332. doi:10.1145/
199448.199526

[39] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An Optimization-Driven

Incremental Inline Substitution Algorithm for Just-In-Time Compilers. In CGO. 164–179. doi:10.1109/CGO.2019.8661171
[40] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,

Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking

Suite for Parallel Applications on the JVM (PLDI’19’). 31–47.
[41] Red Hat. 2025. Quarkus. https://quarkus.io/

[42] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. 2002. An Efficient Profile-analysis Framework for Data-layout

Optimizations. In POPL. 140–153. doi:10.1145/565816.503287
[43] Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis of Object-Oriented Programming Languages.

In CC. 126–137. doi:10.1007/3-540-36579-6_10
[44] Joe Savage and Timothy M. Jones. 2020. HALO: Post-link Heap-layout Optimisation. In CGO. 94–106. doi:10.1145/

3368826.3377914

[45] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Partial Escape Analysis and Scalar Replacement

for Java. In CGO. 165–174. doi:10.1145/2581122.2544157
[46] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. 2023. SpecFaaS: Accelerating Serverless Applications

with Speculative Function Execution (HPCA’23). 814–827.
[47] The Kernel Development Community. 2025. Documentation for /proc/sys/vm/. https://www.kernel.org/doc/html/

latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

https://doi.org/10.1007/978-3-319-64203-1_19
https://doi.org/10.1145/3589610.3596277
https://ktor.io/
https://doi.org/10.1145/1542431.1542447
https://doi.org/10.1145/3497776.3517764
https://doi.org/10.1145/3585007
https://llvm.org/docs/Benchmarking.html
https://doi.org/10.1145/3132190.3132210
https://doi.org/10.1145/3696443.3708960
https://doi.org/10.1145/2989225.2989232
https://micronaut.io/
https://doi.org/10.1145/3527853
https://www.graalvm.org/jdk21/reference-manual/native-image/
https://www.graalvm.org/jdk21/reference-manual/native-image/
https://github.com/oracle/graal/blob/1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.py#L1000
https://github.com/oracle/graal/blob/1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.py#L1000
https://github.com/oracle/graal/blob/1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.py#L1000
https://helidon.io/
https://github.com/oracle/graal/blob/1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.py#L1988
https://github.com/oracle/graal/blob/1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.py#L1988
https://github.com/oracle/graal/blob/1ff637ab400c9098d2c06606d646e4733e8af9a5/java-benchmarks/mx.java-benchmarks/mx_java_benchmarks.py#L1988
https://doi.org/10.1109/CGO51591.2021.9370314
https://spring.io/
https://doi.org/10.1145/199448.199526
https://doi.org/10.1145/199448.199526
https://doi.org/10.1109/CGO.2019.8661171
https://quarkus.io/
https://doi.org/10.1145/565816.503287
https://doi.org/10.1007/3-540-36579-6_10
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.1145/2581122.2544157
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches

325:28 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

[48] VMware Tanzu. 2025. Spring Framework. https://spring.io/

[49] Yongliang Wang, Naijie Gu, Junjie Su, Dongsheng Qi, and Zhuorui Ning. 2022. Data Layout Optimization based on the

Spatio-Temporal Model of Field Access. In AEMCSE. 238–244. doi:10.1109/AEMCSE55572.2022.00055

[50] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter Bernard Kessler, Oleg Pliss, and

Thomas Würthinger. 2019. Initialize Once, Start Fast: Application Initialization at Build Time. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 184:1–184:29. doi:10.1145/3360610

[51] Christian Wimmer, Codrut Stancu, David Kozak, and Thomas Würthinger. 2024. Scaling Type-Based Points-to Analysis

with Saturation. In PLDI. 990–101. doi:10.1145/3656417
[52] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong Ye. 2018. ShareJIT: JIT Code Cache Sharing across

Processes and Its Practical Implementation. Proc. ACM Program. Lang. 2, OOPSLA, Article 124 (Oct 2018), 23 pages.
doi:10.1145/3276494

[53] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang. 2016. A Short Survey of

Recent Advances in Graph Matching (ICMR’16). 167–174.
[54] Yang Guo. 2015. Custom Startup Snapshots. https://www.v8.dev

[55] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster Computing

with Working Sets (HotCloud’10). 10 pages.

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 325. Publication date: October 2025.

https://spring.io/
https://doi.org/10.1109/AEMCSE55572.2022.00055
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3656417
https://doi.org/10.1145/3276494
https://www.v8.dev

	Abstract
	1 Introduction
	2 Background
	2.1 Native Image
	2.2 Profile-Guided Binary Reordering

	3 Design
	4 Approach
	4.1 Context-Augmented Heap-Path (CAHP) Generation
	4.2 Prefix-Tree Serialization/Deserialization
	4.3 Exact Path Matching
	4.4 Partial Path Matching
	4.5 Heap Ordering

	5 Correctness and Efficiency
	6 Evaluation
	6.1 Evaluation Settings
	6.2 Page-Fault Reduction
	6.3 Execution-Time Speedup
	6.4 Build-Time Overhead
	6.5 Object-Ordering Statistics

	7 Optimized-Heap-Snapshot Visualization and Analysis
	8 Related Work
	8.1 Optimizing Heap Ordering
	8.2 Improving Startup Performance

	9 Discussion
	10 Concluding Remarks
	Acknowledgments
	References

