
Università della Svizzera italiana, Lugano, Switzerland

Andrea Rosà, Walter Binder

P3: A Profiler Suite for Parallel Applications 
on the Java Virtual Machine

SPLASH 2022

COVID Time Papers In Person

December 6, 2022

APLAS 2020



➢ Concurrency is becoming increasingly important to speed up applications

➢ It is fundamental to analyze concurrency and synchronization constructs

used by concurrent applications

● Enables performance assessment

● Enables detection of optimization opportunities

Background

2



➢ Novel profiling suite for parallel applications running on the

Java Virtual Machine (JVM)

➢ Focus on metrics related to parallelism, concurrency, and synchronization

● Concurrent entities (e.g., threads, tasks, actors, futures)

● Constructs and classes to implement synchronization (e.g., locks, parking, 

synchronizers)

● Lock-free operations (e.g., atomic, volatile)

● Synchronized and concurrent collections

P3

3



➢ P3 can be readily applied:

● To popular benchmark suites

● To public code repositories

➢ P3 incurs only moderate profiling overhead

P3

4



➢ Challenges in developing P3:

● Moderate overhead

● High accuracy

➢ Enabling features:

● Use of lock-free data structures

● Few computations done in instrumentation

● Use of reification of reflective information in a separate instrumentation 

process [1]

P3

5[1] A. Rosà et al., "Optimizing Type-specific Instrumentation on the JVM with Reflective Supertype Information". 
Journal of Visual Languages & Computing 49, 2018.



1. Metrics

2. Architecture

3. Implementation

4. Application to previous research

5. Evaluation

6. Conclusions

Outline

6



Metrics

7



Metrics – Concurrent Entities

8



Metrics - Synchronization

9



Metrics – Lock-free Operations

10



Metrics - Collections

11



➢ Bytecode count 

● Number of bytecode instructions executed

● Allows metric normalization w.r.t. platform-independent quantity

● Useful for comparing metrics in different applications

➢ Caller context

● Method in which an event occurs

● Allows per-method event counters 

● Enable detection of code where most events of a given type occur

o Useful information to locate optimization opportunities

Additional Metrics

12



Architecture

13



Architecture

14



Architecture

15



Architecture

16



Architecture

17



Architecture

18



Architecture

19



Architecture

20



Architecture

21



`Architecture

22



Architecture

23



Architecture

24



Architecture

25



Architecture

26



Architecture

27



Architecture

28



Architecture

29



Architecture

30



Architecture

31



Architecture

32



Architecture



Architecture



[2] S. Blackburn et al., "The DaCapo Benchmarks: Java Benchmarking Development and Analysis". SIGPLAN Not. 41(10), 2006.

[4] SPECjvm2008. https://www.spec.org/jvm2008/
[5] A. Villazon et al., "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.

➢ Allow determining benchmark iteration start/end

● Enable collection of per-iteration metrics

● Useful for differentiating warm-up from steady-state performance

➢ P3 includes plugins for Renaissance [1], DaCapo [2], ScalaBench [3], SPECjvm2008 [4]

➢ Users can implement plugins for other benchmark suites

➢ Can interface with NAB [5]

● A framework for conducting dynamic analysis on public code repositories

Plugins

35

[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.

[3] A. Sewe et al., "Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine". OOPSLA 2011.



Main Implementation Details

➢ Built on top of the DiSL framework for bytecode instrumentation [1]

● Guarantees complete bytecode coverage

● Events of interest detectable also in the Java Class Library

➢ Implementation designed to keep profiling overhead moderate

while not jeopardizing accuracy

● Events registered in thread-local primitive counters

○ No expensive synchronization or extra heap allocations

● Counter elaboration done in a separate process

36
[1] L. Marek et al., " DiSL: A Domain-specific Language for Bytecode Instrumentation". AOSD 2012.



Main Implementation Details

➢ P3 requires access to reflective information on class under instrumentation

● Usually not available in out-of-process instrumentation

● Usual expensive solutions in instrumentation code: 

○ Insertion of expensive dynamic checks

○ Use of Java Reflection API

➢ P3 can access reflective information thanks to the DiSL Reflection API [1]

● Provides partial reflective information on class under instrumentation

● Greatly reduces profiling overhead

○ E.g., from 1613x to 1.03x (volatile)
37[1] A. Rosà et al., "Optimizing Type-specific Instrumentation on the JVM with Reflective Supertype Information". 

Journal of Visual Languages & Computing 49, 2018.



[2] A. Villazon et al., "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.

➢ P3 was fundamental in development of Renaissance [1]

● Selection of candidate workloads in public software repositories

○ Showing high concurrency and synchronization

● Filter out workloads with low parallelism and concurrency

● Profile key metrics on concurrency and synchronization

○ Demonstrate diversity of Renaissance wrt. other suites

➢ P3 was used to conduct large-scale analyses with NAB [2]

● Particularly on task-parallel workloads

Applications to Previous Research

38[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.



➢ Target workload: Renaissance benchmark suite [1]

● Variability of metrics

● Profiling overhead

➢ Evaluation setting:

● Only steady-state iterations considered

● Instrumentation and analysis servers deployed on different NUMA node than 

Renaissance

● No other CPU-, memory-, or IO-intensive applications in execution

Evaluation

39
[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.



➢ Goal: Conduct preliminary analysis on metric variability for multiple interations of 

the Renaissance benchmarks

● Focus on metrics on parallelism, concurrency and synchronization

● Aim at finding workloads showing symptoms of metric variability

➢ Profile all supported metrics in 20 steady-state iterations

➢ For each metric:

● Compare values in each iteration with median across all steady-state iterations

● Focus on benchmarks with a variation >= ±20% wrt. median in at least one 

iteration

Evaluation – Metric Variability

40



Evaluation – Metric Variability

41

➢ 3 benchmarks show significant variability in a metric

342 338 273 248



Evaluation – Metric Variability

42

➢ 3 benchmarks show significant variability in a metric

342 338 273 248



Evaluation – Metric Variability

43

➢ 3 benchmarks show significant variability in a metric

342 338 273 248



Evaluation – Metric Variability

44

➢ 3 benchmarks show significant variability in a metric

342 338 273 248



Evaluation – Metric Variability

45

➢ 3 benchmarks show significant variability in a metric

➢ Patterns indicate occasional or periodic operations that may introduce variability in 

workloads

342 338 273 248



➢ Median profiling overhead across all Renaissance 

benchmarks

● Measured on 20 steady-state iterations

➢ Overhead <= 1.01x for most modules

➢ Overhead = 1.03x for task, ilock and volatile

➢ Overhead = 1.18x when all modules are active

Profiling Overhead

46



➢ Over-profiling possible, if JIT compiler removes events of interest without also 

removing corresponding instrumentation code

● Well-known limitation of bytecode instrumentation

➢ Profiling overhead when all modules are active (1.18x) could be significant for some 

applications 

● Often no need to activate all modules

● Profiling overhead of individual modules is low

Limitation

47



➢ P3: a new profiler suite for concurrent applications on the JVM

➢ Collects many kinds of metrics on parallelism, concurrency and synchronization

➢ Moderate profiling overhead

➢ Applicable to prevalent benchmark suites (Renaissance, DaCapo, ScalaBench, 

SPECjvm2008)

➢ Suitable for large-scale analysis with NAB

➢ Fundamental in conducting previous research (e.g., Renaissance)

➢ P3 can help researchers conduct novel analyses and better understand multi-

threaded applications

Conclusions

48



➢ Further increase accuracy

➢ Further decrease profiling overhead

➢ Expand set of profiled metrics

Future Work

49



➢ Contacts:

Andrea Rosà

andrea.rosa@usi.ch

50

Thanks for your attention

http://dag.inf.usi.ch/software/p3


	Slide 1
	Slide 2: Background 
	Slide 3: P3 
	Slide 4: P3 
	Slide 5: P3 
	Slide 6: Outline
	Slide 7: Metrics 
	Slide 8: Metrics – Concurrent Entities 
	Slide 9: Metrics - Synchronization 
	Slide 10: Metrics – Lock-free Operations 
	Slide 11: Metrics - Collections 
	Slide 12: Additional Metrics 
	Slide 13: Architecture
	Slide 14: Architecture
	Slide 15: Architecture
	Slide 16: Architecture
	Slide 17: Architecture
	Slide 18: Architecture
	Slide 19: Architecture
	Slide 20: Architecture
	Slide 21: Architecture
	Slide 22: `Architecture
	Slide 23: Architecture
	Slide 24: Architecture
	Slide 25: Architecture
	Slide 26: Architecture
	Slide 27: Architecture
	Slide 28: Architecture
	Slide 29: Architecture
	Slide 30: Architecture
	Slide 31: Architecture
	Slide 32: Architecture
	Slide 33: Architecture
	Slide 34: Architecture
	Slide 35: Plugins 
	Slide 36: Main Implementation Details 
	Slide 37: Main Implementation Details 
	Slide 38: Applications to Previous Research
	Slide 39: Evaluation
	Slide 40: Evaluation – Metric Variability
	Slide 41: Evaluation – Metric Variability
	Slide 42: Evaluation – Metric Variability
	Slide 43: Evaluation – Metric Variability
	Slide 44: Evaluation – Metric Variability
	Slide 45: Evaluation – Metric Variability
	Slide 46: Profiling Overhead
	Slide 47: Limitation 
	Slide 48: Conclusions 
	Slide 49: Future Work 
	Slide 50

