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Background

> Concurrency is becoming increasingly important to speed up applications
> |t is fundamental to analyze concurrency and synchronization constructs
used by concurrent applications
® Enables performance assessment

® Enables detection of optimization opportunities



> Novel profiling suite for parallel applications running on the

Java Virtual Machine (JVM)

> Focus on metrics related to parallelism, concurrency, and synchronization

Concurrent entities (e.g., threads, tasks, actors, futures)

Constructs and classes to implement synchronization (e.g., locks, parking,
synchronizers)

Lock-free operations (e.g., atomic, volatile)

Synchronized and concurrent collections



> P3 can be readily applied:
® To popular benchmark suites
® To public code repositories

> P3incurs only moderate profiling overhead



> Challenges in developing P3:
e Moderate overhead
e High accuracy
> Enabling features:
e Use of lock-free data structures
® Few computations done in instrumentation
® Use of reification of reflective information in a separate instrumentation

process [1]

[1] A. Rosa et al., "Optimizing Type-specific Instrumentation on the JVM with Reflective Supertype Information".
Journal of Visual Languages & Computing 49, 2018.
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Metrics

Module | Metrics

thread Threads start and termination.

task | Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
e B e A
future | Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock | Implicit locks: use of synchronized methods and blocks.
elock | Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait | Calls to Object.wait, Object.notify and Object.notifyAil.
S Gl To Thread i
ke  lirend BaTkine And GRmRR g
synch | Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas | Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).
atomic | Use of atomic classes: Atomicint, AtomicLong, AtomicReference. ©~
e
scoll | Use of synchronized collections.
ceoll | Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.




Metrics — Concurrent Entities

Module Metrics

thread Threads start and termination.

task  Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock Implicit locks: use of synchronized methods and blocks.

elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T  lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).
atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference. ©~
R
scoll Use of synchronized collections.
ceoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.




Metrics - Synchronization

Module Metrics

thread Threads start and termination.

task ~ Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock Implicit locks: use of synchronized methods and blocks.

elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T  lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).

atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference.
R
scoll Use of synchronized collections.
ccoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.




Metrics — Lock-free Operations

Module Metrics

thread Threads start and termination.

task  Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries. =~
ilock Implicit locks: use of synchronized methods and blocks.
elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T  lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).

atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference. =~~~
R
scoll Use of synchronized collections.

ccoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.
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Metrics - Collections

Module Metrics

thread Threads start and termination.

task  Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock Implicit locks: use of synchronized methods and blocks.
elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T  lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).
atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference. ©~
R
scoll Use of synchronized collections.

ceoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.




Additional Metrics

> Bytecode count
e Number of bytecode instructions executed
e Allows metric normalization w.r.t. platform-independent quantity
e Useful for comparing metrics in different applications
> Caller context
® Method in which an event occurs
e Allows per-method event counters
® Enable detection of code where most events of a given type occur

o Useful information to locate optimization opportunities
12
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Plugins

> Allow determining benchmark iteration start/end
® Enable collection of per-iteration metrics
e Useful for differentiating warm-up from steady-state performance
> P3includes plugins for Renaissance [1], DaCapo [2], ScalaBench [3], SPECjvm2008 [4]
> Users can implement plugins for other benchmark suites
> Can interface with NAB [5]
e A framework for conducting dynamic analysis on public code repositories

[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.

[2] S. Blackburn et al., "The DaCapo Benchmarks: Java Benchmarking Development and Analysis". SIGPLAN Not. 41(10), 2006.

[3] A. Sewe et al., "Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine". OOPSLA 2011.

[4] SPECjvm2008. https://www.spec.org/jvm2008/ 35
[5] A. Villazon et al., "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.



Main Implementation Details

> Built on top of the DiSL framework for bytecode instrumentation [1]
e Guarantees complete bytecode coverage
® Events of interest detectable also in the Java Class Library
> Implementation designed to keep profiling overhead moderate
while not jeopardizing accuracy
e Events registered in thread-local primitive counters
O No expensive synchronization or extra heap allocations

e Counter elaboration done in a separate process

36
[1] L. Marek et al., " DiSL: A Domain-specific Language for Bytecode Instrumentation". AOSD 2012.



Main Implementation Details

> P3 requires access to reflective information on class under instrumentation
e Usually not available in out-of-process instrumentation
e Usual expensive solutions in instrumentation code:
O Insertion of expensive dynamic checks
O Use of Java Reflection API
> P3 can access reflective information thanks to the DiSL Reflection API [1]
® Provides partial reflective information on class under instrumentation
® Greatly reduces profiling overhead

o E.g., from 1613x to 1.03x (volatile)

[1] A. Rosa et al., "Optimizing Type-specific Instrumentation on the JVM with Reflective Supertype Information".
Journal of Visual Languages & Computing 49, 2018.

37



Applications to Previous Research

> P3was fundamental in development of Renaissance [1]
e Selection of candidate workloads in public software repositories
o Showing high concurrency and synchronization
® Filter out workloads with low parallelism and concurrency
® Profile key metrics on concurrency and synchronization
o Demonstrate diversity of Renaissance wrt. other suites
> P3was used to conduct large-scale analyses with NAB [2]

e Particularly on task-parallel workloads

[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019. 38
[2] A. Villazon et al., "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.



Evaluation

> Target workload: Renaissance benchmark suite [1]
e Variability of metrics
e Profiling overhead
> Evaluation setting:
® Only steady-state iterations considered
® Instrumentation and analysis servers deployed on different NUMA node than

Renaissance

® No other CPU-, memory-, or |O-intensive applications in execution

39
[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.



Evaluation — Metric Variability

> Goal: Conduct preliminary analysis on metric variability for multiple interations of
the Renaissance benchmarks
® Focus on metrics on parallelism, concurrency and synchronization
e Aim at finding workloads showing symptoms of metric variability
> Profile all supported metrics in 20 steady-state iterations
> For each metric:
e Compare values in each iteration with median across all steady-state iterations
® Focus on benchmarks with a variation >= £20% wrt. median in at least one

iteration
40



Evaluation — Metric Variability
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Evaluation — Metric Variability
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Evaluation — Metric Variability
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Evaluation — Metric Variability
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Evaluation — Metric Variability
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Profiling Overhead

Module OH

thread 1.00
Cage T o5
actor 1.01
T o1
ilock 1.03
Siage o1
wait 1.00
T o1
Sari o0
synch 1.01
cas 1.01
atomic 1.01
olatiia o5
scoll 1.00
S o1

Median profiling overhead across all Renaissance
benchmarks

® Measured on 20 steady-state iterations
Overhead <= 1.01x for most modules
Overhead = 1.03x for task, ilock and volatile

Overhead = 1.18x when all modules are active

46



Limitation

> QOver-profiling possible, if JIT compiler removes events of interest without also
removing corresponding instrumentation code
e Well-known limitation of bytecode instrumentation
> Profiling overhead when all modules are active (1.18x) could be significant for some
applications
e Often no need to activate all modules

e Profiling overhead of individual modules is low

47



Conclusions

Yy vV YV Y

|

|

P3: a new profiler suite for concurrent applications on the JVM

Collects many kinds of metrics on parallelism, concurrency and synchronization
Moderate profiling overhead

Applicable to prevalent benchmark suites (Renaissance, DaCapo, ScalaBench,
SPECjvm2008)

Suitable for large-scale analysis with NAB

Fundamental in conducting previous research (e.g., Renaissance)

P3 can help researchers conduct novel analyses and better understand multi-

threaded applications
48



Future Work

> Further increase accuracy
> Further decrease profiling overhead

> Expand set of profiled metrics

49
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Thanks for your attention

httP://dag.inf.usi.ch/software/gg

> Contacts: E . E
R | n
Andrea Rosa .

andrea.rosa@usi.ch
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