P3: A Profiler Suite for Parallel Applications
on the Java Virtual Machine

Andrea Rosa, Walter Binder

Universita della Svizzera italiana, Lugano, Switzerland

APLAS 2020

Universita
della
Svizzera
italiana

SPLASH 2022
COVID Time Papers In Person
December 6, 2022

Background

> Concurrency is becoming increasingly important to speed up applications
> |t is fundamental to analyze concurrency and synchronization constructs
used by concurrent applications
® Enables performance assessment

® Enables detection of optimization opportunities

> Novel profiling suite for parallel applications running on the

Java Virtual Machine (JVM)

> Focus on metrics related to parallelism, concurrency, and synchronization

Concurrent entities (e.g., threads, tasks, actors, futures)

Constructs and classes to implement synchronization (e.g., locks, parking,
synchronizers)

Lock-free operations (e.g., atomic, volatile)

Synchronized and concurrent collections

> P3 can be readily applied:
® To popular benchmark suites
® To public code repositories

> P3incurs only moderate profiling overhead

> Challenges in developing P3:
e Moderate overhead
e High accuracy
> Enabling features:
e Use of lock-free data structures
® Few computations done in instrumentation
® Use of reification of reflective information in a separate instrumentation

process [1]

[1] A. Rosa et al., "Optimizing Type-specific Instrumentation on the JVM with Reflective Supertype Information".
Journal of Visual Languages & Computing 49, 2018.

Outline

o v s~ W NP

Metrics

Architecture

Implementation

Application to previous research
Evaluation

Conclusions

Metrics

Module | Metrics

thread Threads start and termination.

task | Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
e B e A
future | Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock | Implicit locks: use of synchronized methods and blocks.
elock | Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait | Calls to Object.wait, Object.notify and Object.notifyAil.
S Gl To Thread i
ke lirend BaTkine And GRmRR g
synch | Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas | Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).
atomic | Use of atomic classes: Atomicint, AtomicLong, AtomicReference. ©~
e
scoll | Use of synchronized collections.
ceoll | Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.

Metrics — Concurrent Entities

Module Metrics

thread Threads start and termination.

task Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock Implicit locks: use of synchronized methods and blocks.

elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).
atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference. ©~
R
scoll Use of synchronized collections.
ceoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.

Metrics - Synchronization

Module Metrics

thread Threads start and termination.

task ~ Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock Implicit locks: use of synchronized methods and blocks.

elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).

atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference.
R
scoll Use of synchronized collections.
ccoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.

Metrics — Lock-free Operations

Module Metrics

thread Threads start and termination.

task Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries. =~
ilock Implicit locks: use of synchronized methods and blocks.
elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).

atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference. =~~~
R
scoll Use of synchronized collections.

ccoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.

10

Metrics - Collections

Module Metrics

thread Threads start and termination.

task Tasks creation and execution (instances of Runnable, Callable and ForkJoinTask).
T e A
future Futures and promises from Java’s, Scala’s and Twitter’s libraries.
ilock Implicit locks: use of synchronized methods and blocks.
elock Explicit locks: use of interfaces Lock, ReadWriteLock and Condition.
wait Calls to Object.wait, Object.notify and Object.notifyAll.
S Gl To Thread i
T lirend BATKine AR R
synch Synchronizers: Semaphore, CountDownLatch, CyclicBarrier, Phaser and Exchanger.
cas Compare-and-swap (CAS), get-and-swap (GAS), get-and-add (GAA).
atomic Use of atomic classes: Atomicint, AtomicLong, AtomicReference. ©~
R
scoll Use of synchronized collections.

ceoll Use of concurrent collections: BlockingQueue, ConcurrentMap and subtypes.

Additional Metrics

> Bytecode count
e Number of bytecode instructions executed
e Allows metric normalization w.r.t. platform-independent quantity
e Useful for comparing metrics in different applications
> Caller context
® Method in which an event occurs
e Allows per-method event counters
® Enable detection of code where most events of a given type occur

o Useful information to locate optimization opportunities
12

Architecture

Instrumentation

Protocol

Target Application Instrumentation Server

Je)sibay

Intercept

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP|

Command _

Instrument

%

Thread-local
Counters

' 4 Thread End |
Fetch 4 :

®

Send

Analysis
Protocol

Analysis
Data

Weaver

Analysis Server

® Elaborate

f Shutdown Event

Structures v\ /|

Counter
Processor

Trigger

Trace
Handler

&

Traces |5

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Loading
f Event

Intercept

£

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

$

—

Jo)sibay

Thread-local
Counters

Fetch :

%

f Thread End :

®

Send

Analysis
Protocol

Analysis
Data

Structures w

Weaver

Analysis Server

Elaborate

f Shutdown Event

@
S

Counter
Processor

Trigger

Trace
Handler

&

Traces (,

Architecture

Target Application

Je)sibay

Instrumentation

Protocol

Intercept

Instrumentation Server

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

Thread-local
Counters

Fetch 4 Thread End

®

Send

_

Analysis
Protocol

Analysis Server
& Elaborate

Analysis
Data
Structures w

Weaver

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Query DiSL Reflection

Je)sibay

Intercept

Thread-local
Counters

Fetch :

©

Linking

Instrumentation

ﬂ Logic

1©

API

Command _

Instrument

%

f Thread End |

®

Send

Analysis
Protocol

Analysis
Data

Structures w

Weaver

Analysis Server

g8 Elaborate

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces ¢

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Loading
f Event

Intercept

£

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

S

—

Je)sibay

Thread-local
Counters

Fetch :

%

f Thread End |

®

Send

Analysis
Protocol

Analysis Server
& Elaborate

Analysis
Data
Structures w

Weaver

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces 5

Architecture

Target Application

f Event

Je)sibay

Loading

Instrumentation
Protocol

Intercept

Instrumentation

£

©

Linking

Command _

Instrumentation Server

Query

DiSL Reflection

@ API

& | Send L Instrument

S

—

Thread-local
Counters

Fetch :

%

f Thread End |

Analysis Server
g

Analysis

Weaver

Elaborate

f Shutdown Event

Data
Structures w

®

LR Counter

Processor

Analysis

Protocol

)
S

Trgger @

Trace
Handler

&

Traces g

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent ¢ @ AN sord Instrumentation | Query | DiSL Reflection
(4 Intercept ¥ Logic API
=2 oy 09 ©
@ Command
g) _ Linking £] Send |, Instrument Weaver

I e

S

1]

g :

Analysis Server 4 Shutdown Event
&
Analvysis Elaborate
Thread-local d @ @
Count Data =g Trigger
ounters Structures N | @
4 Thread End | © s® @

Fetch ; : Ll Counter Trace _N

_

Processor Handler =
Traces (g

Analysis
Protocol

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent ¢ @® A sond Instrumentation Query | DiSL Reflection
Zfij Intercept - 2 Logic @ API
(6) Command
,g, < Linking &) Send Weaver
% — @
Q
&
g .
Analysis Server 4 Shutdown Event
2
Analvysis Elaborate
Thread-local d @ @
Count Data =g Trigger
ounters Structures N | @
4 Thread End | © s® @
Fetch ; : Ll Counter Trace _N

_

Processor Handler =
Traces ,,

Analysis
Protocol

Architecture

Target Application

f Event

Je)sibay

Loading

Intercept

Instrumentation

Protocol

Instrumentation Server

£

©

Linking

Thread-local
Counters

Fetch :

_

’f Thread End |

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

®

Send

Analysis
Protocol

Analysis
Data

Structures w

Weaver

Analysis Server

g8 Elaborate

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces ,,

"Architecture

Instrumentation
. i Protocol i
Target Application Instrumentation Server

Loading

Intercept

Query

DiSL Reflection

f Event

Je)sibay

Thread-local
Counters

Fetch :

Linking

f Thread End |

Instrumentation

ﬂ Logic

Command _

’@ AP|

Instrument

®

Send

Analysis
Protocol

Analysis Server

&

Weaver

Elaborate

f Shutdown Event

Analysis
Data
Structures v\ /|

Counter
Processor

)
S

Trigger

Trace
Handler

&

Traces ,,

Architecture

Target Application

Loading

f Event

Instrumentation
Protocol .
Instrumentation

Server

Intercept

Instrumentation

o Logic

£

©

Linking

Query

DiSL Reflection

1©

API

Command _

Instrument

S

—

J8)sibay

Thread-local
Counters

Fetch :

%

f Thread End

Analysis
Data
Structures w

®

Analysis Server
& Elaborate

Weaver

f Shutdown Event

@
S

Send Counter

Processor

Analysis

Protocol

Trigger

Trace
Handler

&

Traces 5

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Loading
f Event

Intercept

£

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

S

—

Je)sibay

Thread-local
Counters

OBX

R —
=

%

®

Send

Analysis
Protocol

Analysis
Data

Structures w

Weaver

Analysis Server

g8 Elaborate

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces ,,

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Query DiSL Reflection

Je)sibay

Intercepr

©

Linking

Instrumentation

ﬂ Logic

’@ AP

Command _

Instrument

%

Thread-local
Counters

®

Send

Analysis
Protocol

Analysis
Data

Structures w

Weaver

Analysis Server

g8 Elaborate

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces ¢

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Loading
f Event

Intercept

£

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

S

—

Je)sibay

Thread-local
Counters

Fetch :

%

f Thread End |

Analysis
Protocol

Analysis Server
& Elaborate

Analysis
Data
Structures w

Weaver

f Shutdown Event

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces ¢

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Loading
f Event

Intercept

£

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

$

—

Jo)sibay

Thread-local
Counters

Fetch :

%

f Thread End :

®

Send

Analysis
Protocol

Analysis
Data

Structures w

Weaver

Analysis Server

Elaborate

f Shutdown Event

@
S

Counter
Processor

Trigger

Trace
Handler

&

Traces

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent ¢ @® A sond Instrumentation Query | DiSL Reflection
Zfij Intercept - 2 Logic @ API
@ Command _
é’ _ Linking £] Send Instrument Weaver
I ‘=/3 b H
§
1]
g :
Analysis Server 4 Shutdown Event
2
Analvysis Elaborate
Thread-local d @ @
Count Data =g Trigger
ounters Structures N | @
4 Thread End | © s® @
Fetch ; : Ll Counter Trace _N

_

Processor Handler =
Traces g

Analysis
Protocol

Architecture

Target Application

Loading
f Event

Instrumentation
Protocol

Intercept

Instrumentation

Instrumentation Server

Query

ﬂ Logic

£

©

Linking

Command _

’@ AP

DiSL Reflection

Instrument

S

—

Je)sibay

Thread-local
Counters

Fetch :

%

f Thread End |

Analysis Server

Analysis

Weaver

Elaborate

f Shutdown Event

Data
Structures w

®

LR Counter

Processor

Analysis

Protocol

S

Trigger

Trace
Handler

&

Traces ,q

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent ¢ @® A sond Instrumentation Query | DiSL Reflection
Zfij Intercept - 2 Logic @ API
@ Command _
g) _ Linking £] Send |, Instrument Weaver
I —
§
1]
o} .
Analysis Server 4 Shutdown Event
Analvysis Elaborate
Thread-local Da¥a . | < Tn@er @
Counters Structures v\ 7 |l 99 @
4 Thread End | © s® @
Fetch ; : Ll Counter Trace _N

_

Processor Handler =
Traces 5,

Analysis
Protocol

Architecture

Instrumentation

Protocol .
Instrumentation Server

Target Application

Loading
f Event

Intercept

£

©

Linking

Instrumentation

ﬂ Logic

Query

DiSL Reflection

’@ AP

Command _

Instrument

S

—

Je)sibay

Thread-local
Counters

Fetch :

%

f Thread End |

®

Send

Analysis
Protocol

Analysis Server

Analysis
Data
Structures w

Weaver

Elaborate

If Shutdown EventI

)
S

Counter
Processor

Trigger

Trace
Handler

&

Traces 3,

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent ¢ @® A sond Instrumentation Query | DiSL Reflection
Zfij Intercept - 2 Logic @ API
@ Command _
é’ _ Linking £] Send Instrument Weaver
I ‘=/3 b H
S
1]
g :
Analysis Server 4 Shutdown Event
Analvysis Elaborate
Thread-local d @ @
Count Data =g Trigger
ounters Structures \ewss? @
4 Thread End | © @
Fetch _: 4 . Send Counter Trace _

_

Processor Handler =
Traces 5,

Analysis
Protocol

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent @ N sond Instrumentation Query »| DiSL Reflection
é{) Intercept) el g, Logic (© API
=
@ Command _
g) _ Linking £| Send |, Instrument Weaver

%

—

Je)sibay

Analysis Server 4 Shutdown Event

® Elaborate
Data v Trigger

Analysis

Thread-local
Counters

Structures v\ /|

®
® S®

4 Thread End ; Send

Fetch :

Trace
Handler

Counter
Processor

Analysis
Protocol

Architecture

Instrumentation

Protocol
Target Application Instrumentation Server
Loading
vaent @® A sond Instrumentation | _Query | DiSL Reflection
é{) Intercept) el g, Logic (© API
=
@ Command _
g) _ Linking £| Send |, Instrument Weaver
I e
D
e
g :
Analysis Server 4 Shutdown Event
g
Analvysis Elaborate
Thread-local Da¥a])
Counters N Trigger
ﬁ' Structures v\ / |o
v ~~
. f Thread End : @ %
w Fetch ; Send Counter Trace
N
A — Handler

Iﬁ Plugins (2) I Analysis Processor
Protocol

Plugins

> Allow determining benchmark iteration start/end
® Enable collection of per-iteration metrics
e Useful for differentiating warm-up from steady-state performance
> P3includes plugins for Renaissance [1], DaCapo [2], ScalaBench [3], SPECjvm2008 [4]
> Users can implement plugins for other benchmark suites
> Can interface with NAB [5]
e A framework for conducting dynamic analysis on public code repositories

[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.

[2] S. Blackburn et al., "The DaCapo Benchmarks: Java Benchmarking Development and Analysis". SIGPLAN Not. 41(10), 2006.

[3] A. Sewe et al., "Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine". OOPSLA 2011.

[4] SPECjvm2008. https://www.spec.org/jvm2008/ 35
[5] A. Villazon et al., "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.

Main Implementation Details

> Built on top of the DiSL framework for bytecode instrumentation [1]
e Guarantees complete bytecode coverage
® Events of interest detectable also in the Java Class Library
> Implementation designed to keep profiling overhead moderate
while not jeopardizing accuracy
e Events registered in thread-local primitive counters
O No expensive synchronization or extra heap allocations

e Counter elaboration done in a separate process

36
[1] L. Marek et al., " DiSL: A Domain-specific Language for Bytecode Instrumentation". AOSD 2012.

Main Implementation Details

> P3 requires access to reflective information on class under instrumentation
e Usually not available in out-of-process instrumentation
e Usual expensive solutions in instrumentation code:
O Insertion of expensive dynamic checks
O Use of Java Reflection API
> P3 can access reflective information thanks to the DiSL Reflection API [1]
® Provides partial reflective information on class under instrumentation
® Greatly reduces profiling overhead

o E.g., from 1613x to 1.03x (volatile)

[1] A. Rosa et al., "Optimizing Type-specific Instrumentation on the JVM with Reflective Supertype Information".
Journal of Visual Languages & Computing 49, 2018.

37

Applications to Previous Research

> P3was fundamental in development of Renaissance [1]
e Selection of candidate workloads in public software repositories
o Showing high concurrency and synchronization
® Filter out workloads with low parallelism and concurrency
® Profile key metrics on concurrency and synchronization
o Demonstrate diversity of Renaissance wrt. other suites
> P3was used to conduct large-scale analyses with NAB [2]

e Particularly on task-parallel workloads

[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019. 38
[2] A. Villazon et al., "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.

Evaluation

> Target workload: Renaissance benchmark suite [1]
e Variability of metrics
e Profiling overhead
> Evaluation setting:
® Only steady-state iterations considered
® Instrumentation and analysis servers deployed on different NUMA node than

Renaissance

® No other CPU-, memory-, or |O-intensive applications in execution

39
[1] A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". PLDI 2019.

Evaluation — Metric Variability

> Goal: Conduct preliminary analysis on metric variability for multiple interations of
the Renaissance benchmarks
® Focus on metrics on parallelism, concurrency and synchronization
e Aim at finding workloads showing symptoms of metric variability
> Profile all supported metrics in 20 steady-state iterations
> For each metric:
e Compare values in each iteration with median across all steady-state iterations
® Focus on benchmarks with a variation >= £20% wrt. median in at least one

iteration
40

Evaluation — Metric Variability

>100 ® 342 ® 338 ® 273 248 ®
T 4 db-shootout (ilock)
= 80 m neodj-analytics (ilock)
% 60 @ movie-lens (volatile)
()

® ¢ |
g o9 AR ¢ e 48
i 20 \ /f' ‘\\ . / \\ : £ . / \\\ p.’_’_.__/_/‘.__.fI-\‘;”—.’//
= o/ N o/ e g @ BT g gl ®
% 0 o ® = ; 1 __‘_——‘““\“'";— *\\ o © \\‘ § °® o9
o= g - \ — 77—:_._/_—- - \\ /, 4 7#%”’//,
g 20 .,,,A_’,/ “ \‘ \\‘ ‘
-40
1 2 3 4 5 6 V4 8 9 10 11 12 13 14 15 16 17 18 19 20

Steady-state iteration

> 3 benchmarks show significant variability in a metric

41

Evaluation — Metric Variability

>100 ® 342 ® 338 ® 273 248 ®
Ty 4 db-shootout (ilock)
S 80
= ‘W neodj-analytics (Iloc
% 60 @ movie-lens (volatile)
(0]
® ¢ |
E 40 ’ b /’\ , G , -4 /"_jj ; |
= 20 \\ i 3 o P R— U R S e
£ ° / : . __.-4-—l»—i"”‘ H x - ®
8 0 @ \' ® .’——‘ ' ﬂ_l‘A @ \\\‘ —A‘ o @ ‘
& -20f . " i > ¢
S e \‘ &
-40
1 2 3 4 5] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Steady-state iteration

> 3 benchmarks show significant variability in a metric

42

Evaluation — Metric Variability

>100 ® 342 ® 338 ® 273 248 ®
T 4 db-shootout (ilock)
= 80 m neo4j-analytics (ilock)‘
© 5 ",
g 60 movie ’

’ /‘- d
E 0 ¢) * . s ¢ I S |
5 20 \ | e i PN
/ ,—\-‘-'—‘~ //

= \ _—.—'4"—. \ [/ ®
5 Fe— " * ‘ - } ‘ ‘ C o o« ¢
R _,-g——— \ =

s -20 -4 | / . -
p o \‘ 2

-40
1 2 3 4 5 6 74 8 9 10 11 12 13 14 15 16 17 18 19 20

Steady-state iteration

> 3 benchmarks show significant variability in a metric

43

Evaluation — Metric Variability

>100 ® 342 ® 338 ® 273 248 ®
9 4 db-shootout (ilock)
= 80 ' m neodj-analytics (ilock)
% 60 1® movie-lens (volatile)
(0]

® ¥ |
£ ® ® * . * o =
5 20 \ e _ T T B
£ o/ : . --.-4——-»—&""‘ o |/ ol @
= 0 o ' ® = '_’—‘ E B ﬂ_“ @ ‘\\' ¢ ® ¢
= -20 ‘ .__,— \ /, X 7""/’//—
g 43 e ¥
-40
1 2 3 4 o 6 74 8 9 i0 11 12 13 14 15 16 17 18 19 20

Steady-state iteration

> 3 benchmarks show significant variability in a metric

44

Evaluation — Metric Variability

>100 ® 342 ® 338 ® 273 248 ®
T 4 db-shootout (ilock)
= 80 m neodj-analytics (ilock)
% 60 @ movie-lens (volatile)
e . 4
E 40 ¢ ¢ ,
£ \ , b * ¢ =
= 20 ; AN NN a5 v S . .
£ \ ® L Lo e ¢ -w- % - e @
= & o v ¢ e ‘_ =8 & " {e ¢ © ¢
= K L \ - ,—:—'.'/_—— = \ /, ~ ’//
§ -20 T L D Y ¥ 'S
-40
i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Steady-state iteration
> 3 benchmarks show significant variability in a metric
> Patterns indicate occasional or periodic operations that may introduce variability in
45

workloads

Profiling Overhead

Module OH

thread 1.00
Cage T o5
actor 1.01
T o1
ilock 1.03
Siage o1
wait 1.00
T o1
Sari o0
synch 1.01
cas 1.01
atomic 1.01
olatiia o5
scoll 1.00
S o1

Median profiling overhead across all Renaissance
benchmarks

® Measured on 20 steady-state iterations
Overhead <= 1.01x for most modules
Overhead = 1.03x for task, ilock and volatile

Overhead = 1.18x when all modules are active

46

Limitation

> QOver-profiling possible, if JIT compiler removes events of interest without also
removing corresponding instrumentation code
e Well-known limitation of bytecode instrumentation
> Profiling overhead when all modules are active (1.18x) could be significant for some
applications
e Often no need to activate all modules

e Profiling overhead of individual modules is low

47

Conclusions

Yy vV YV Y

|

|

P3: a new profiler suite for concurrent applications on the JVM

Collects many kinds of metrics on parallelism, concurrency and synchronization
Moderate profiling overhead

Applicable to prevalent benchmark suites (Renaissance, DaCapo, ScalaBench,
SPECjvm2008)

Suitable for large-scale analysis with NAB

Fundamental in conducting previous research (e.g., Renaissance)

P3 can help researchers conduct novel analyses and better understand multi-

threaded applications
48

Future Work

> Further increase accuracy
> Further decrease profiling overhead

> Expand set of profiled metrics

49

L

Thanks for your attention

httP://dag.inf.usi.ch/software/gg

> Contacts: E . E
R | n
Andrea Rosa .

andrea.rosa@usi.ch

50

	Slide 1
	Slide 2: Background
	Slide 3: P3
	Slide 4: P3
	Slide 5: P3
	Slide 6: Outline
	Slide 7: Metrics
	Slide 8: Metrics – Concurrent Entities
	Slide 9: Metrics - Synchronization
	Slide 10: Metrics – Lock-free Operations
	Slide 11: Metrics - Collections
	Slide 12: Additional Metrics
	Slide 13: Architecture
	Slide 14: Architecture
	Slide 15: Architecture
	Slide 16: Architecture
	Slide 17: Architecture
	Slide 18: Architecture
	Slide 19: Architecture
	Slide 20: Architecture
	Slide 21: Architecture
	Slide 22: `Architecture
	Slide 23: Architecture
	Slide 24: Architecture
	Slide 25: Architecture
	Slide 26: Architecture
	Slide 27: Architecture
	Slide 28: Architecture
	Slide 29: Architecture
	Slide 30: Architecture
	Slide 31: Architecture
	Slide 32: Architecture
	Slide 33: Architecture
	Slide 34: Architecture
	Slide 35: Plugins
	Slide 36: Main Implementation Details
	Slide 37: Main Implementation Details
	Slide 38: Applications to Previous Research
	Slide 39: Evaluation
	Slide 40: Evaluation – Metric Variability
	Slide 41: Evaluation – Metric Variability
	Slide 42: Evaluation – Metric Variability
	Slide 43: Evaluation – Metric Variability
	Slide 44: Evaluation – Metric Variability
	Slide 45: Evaluation – Metric Variability
	Slide 46: Profiling Overhead
	Slide 47: Limitation
	Slide 48: Conclusions
	Slide 49: Future Work
	Slide 50

