
1

Optimization-Aware Compiler-Level Event Profiling

MATTEO BASSO, Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland
ALEKSANDAR PROKOPEC, Oracle Labs, Switzerland
ANDREA ROSÀ, Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland
WALTER BINDER, Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland

Tracking specific events in a program’s execution, such as object allocation or lock acquisition, is at the heart
of dynamic analysis. Despite the apparent simplicity of this task, quantifying these events is challenging
due to the presence of compiler optimizations. Profiling perturbs the optimizations that the compiler would
normally do—a profiled program usually behaves differently than the original one.

In this article, we propose a novel technique for quantifying compiler-internal events in the optimized code,
reducing the profiling perturbation on compiler optimizations. Our technique achieves this by instrumenting
the program from within the compiler, and by delaying the instrumentation until the point in the compilation
pipeline after which no subsequent optimizations can remove the events. We propose two different implemen-
tation strategies of our technique based on path-profiling, and a modification to the standard path-profiling
algorithm that facilitates the use of the proposed strategies in a modern just-in-time (JIT) compiler. We use
our technique to analyze the behaviour of the optimizations in Graal, a state-of-the-art compiler for the Java
Virtual Machine, identifying the reasons behind a performance improvement of a specific optimization, and the
causes behind an unexpected slowdown of another. Finally, our evaluation results show that the two proposed
implementations result in a significantly lower execution-time overhead w.r.t. a naive implementation.

CCS Concepts: • Software and its engineering→ Compilers; Software testing and debugging; Dynamic
analysis.

Additional Key Words and Phrases: Dynamic analysis; Profling; Compiler-IR instrumentation; Just-in-time
compilers; Code optimization; Debugging.

ACM Reference Format:
Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder. 2023. Optimization-Aware Compiler-
Level Event Profiling. ACM Trans. Program. Lang. Syst. 0, 0, Article 1 (2023), 50 pages. https://doi.org/0000001.
0000001

1 INTRODUCTION
To analyze effects of compiler optimizations, compiler developers typically instrument the source
code or the intermediate language (e.g., bytecode), or rely on hardware performance counters
to collect machine events. While source- and bytecode-level approaches allow profiling high-
level events that correspond to object-oriented abstractions in the program (such as e.g. object
allocations or method invocations), machine-level profiling allows tracking low-level behaviour
(such as e.g. branch mispredictions or cache-misses). However, neither of these approaches allows

Authors’ addresses: Matteo Basso, matteo.basso@usi.ch, Università della Svizzera italiana (USI), Faculty of Informatics,
Lugano, Switzerland; Aleksandar Prokopec, aleksandar.prokopec@oracle.com, Oracle Labs, Zürich, Switzerland; Andrea
Rosà, andrea.rosa@usi.ch, Università della Svizzera italiana (USI), Faculty of Informatics, Lugano, Switzerland; Walter
Binder, walter.binder@usi.ch, Università della Svizzera italiana (USI), Faculty of Informatics, Lugano, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0164-0925/2023/0-ART1 $15.00
https://doi.org/0000001.0000001

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

collecting information about compiler-internal concepts (e.g., the lock implementation that the
compiler selects [25, 27, 108], safepoints [23], or the typechecks that the compiler speculatively
executes [29, 30]). They are too low-level to be visible in the source code or bytecode, and too
high-level to be tracked in the machine code.
Moreover, it is established that source- and bytecode-level instrumentation leads to inaccurate

measurements because compiler optimizations affect the event counts [125]. For example, source-
level instrumentation may insert allocation-counting code to count allocations that can be removed
by subsequent optimizations [110]. Conversely, the injected instrumentation code also perturbs the
compiler’s decisions: injected counters may prevent compiler optimizations by interfering with loop
optimizations [114], by impacting the cost-analysis in inlining [124, 125], and in various other ways.
While these problems are intrinsic to source- and bytecode-level instrumentation, compiler-IR-level
instrumentation—i.e., instrumenting within the compiler’s internal representation (IR)—may also
perturb the compiler’s decisions and lead to inaccurate results if not properly designed.

Aside from reducing the accuracy of the instrumentation1, interaction with the optimizations also
introduces performance overheads. Even when the optimizations are not disturbed, instrumentation
by definition adds more work into the program [31, 66, 102, 125], impacts memory locality and
contention [60], and perturbs the system in a way that affects subsequent execution [69]. The
overhead caused by instrumentation may be problematic for practical applications, especially in
the common case where one needs to profile many different event types2 at the same time.

To accurately track compiler-internal events without introducing high overheads that may impair
the profiling of practical applications, we present a new instrumentation technique to efficiently and
accurately profile 43 event types (Section 3). Our technique inserts event markers in the compiler’s
IR at the compiler phases after which no subsequent optimizations affect the corresponding events.
These markers are no-ops from the compiler’s viewpoint—they do not interact with the compiler
optimizations, and are later replaced with the actual instrumentation code. Furthermore, we delay
the insertion of the instrumentation code until the point at which no subsequent optimizations can
occur. Similar to how source-level and bytecode-level instrumentation require understanding the
program representation and the tools for modifying it [96, 97], the compiler-IR instrumentation
that we propose requires understanding the internals of the compiler our approach is applied to.
While user-facing instrumentation tools based on this technique must maintain the invariants of
the compiler IR when modifying it, the users are only burdened with expressing the IR patterns
that they want to profile.
We provide a generic API that enables users to customize the set of event types of interest

(Section 4). Then, we apply our technique to implement event counting, i.e., the collection of
runtime metrics that represent counts of specific execution steps in the program, such as e.g. object
allocations, atomic instructions, lock operations, typechecks, conditional jumps, direct and indirect
method calls, foreign calls, memory barriers, arithmetic operations, safepoints, memory loads and
stores, garbage collection (GC) card writes, deoptimizations, or any custom execution pattern that
the user is interested in.

1Accuracy can be defined as 1− (|observed_count−actual_count | / actual_count) ; observed_count is the event count reported
by our profiler and actual_count is the actual event count in an uninstrumented run. An event is counted in actual_count if a
JIT-emitted machine-code instruction that corresponds to that event is executed. A perfectly accurate profiler (accuracy = 1)
would produce an observed_count identical to the actual_count. Our technique aims at maximizing the accuracy.
2In this article, we use two terms associated with events: type and occurrence. We use the terminology event type (also just
called type for short) to indicate an entity of interest that we want to profile, such as object allocation and method invocation.
Instead, we use the term event occurrence (also just called occurrence for short) to indicate a single event occurrence of a
given type.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:3

We propose two efficient path-profiling strategies aimed at reducing the profiling overhead
when many event types of interest must be collected at the same time. Among several other
profiling techniques (such as the one proposed by Ammons et al. [4]), we consider path-profiling
particularly suitable for tracking compiler-internal events without introducing high overheads.
The first strategy (called path decoding) allows one to collect the event counts online (i.e., during
application execution), while the second strategy (called path counting) further reduces profiling
overhead when event counts can be collected at the end of application execution. We implement
the two proposed strategies in the open-source just-in-time (JIT) compiler Graal [28, 73, 91, 108]
for the Java Virtual Machine (JVM) to profile 43 different event types at the same time.
We note that the standard path-profiling algorithm, performed at the end of the compilation

pipeline where the IR size is bloated due to several optimizations, can produce an exponentially large
number of paths, which drastically affects memory consumption and the runtime of the algorithm.
To mitigate this issue, we propose a modification to the standard path-profiling algorithm that
decreases the total number of paths and makes path profiling applicable in modern JIT compilers
such as Graal without introducing prohibitively high memory consumption and compilation-time
overhead.
In Section 5, we show that our approach allows compiler developers to analyze and debug the

compiler optimization phases using IR metrics, which cannot be collected with methods that work
at the source-, bytecode-, or machine-code level. In particular, we analyze the interaction between
optimizations, event metrics, and the program execution time in Graal, identifying the reasons
behind a performance speedup and the causes of an unexpected slowdown introduced by a compiler
phase.

We evaluate our technique by comparing an implementation of our two strategies with a naive
implementation without path profiling, called direct event counting (Section 6). In particular, we
evaluate execution-time overhead, compilation-time overhead, code-size overhead, and memory
consumption by profiling many event types on the Renaissance [94] and DaCapo [13] benchmark
suites. Our evaluation results show that the proposed implementations allow one to profile a high
number of events simultaneously with a significantly lower execution-time overhead w.r.t. direct
path counting, at the cost of a higher memory consumption (and in the case of path decoding, also
of a higher compilation time).

To summarize, our work makes the following contributions:

• We present a new instrumentation technique to efficiently and accurately profile the execution
of compiler-internal program events (Section 3).

• We propose and implement two efficient path-profiling strategies and a modification to the
standard path-profiling algorithm to count 43 different event types at the same time in the
Graal JIT compiler for the JVM. Moreover, we provide a generic API that enables users to
define their own event types (Section 4).

• We use our approach to identify the reasons behind a performance speedup and the causes
of an unexpected slowdown introduced by a compiler phase (Section 5).

• We evaluate our two strategies and we show that they result in a significantly lower execution-
time overhead w.r.t. a naive implementation (Section 6).

We complement the paper by presenting the necessary background information (Section 2),
discussing the assumptions, other possible usages, and the limitations of our technique (Section 7),
and comparing our approach with related work (Section 8). Finally, we give our concluding remarks
in Section 9.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:4 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

2 BACKGROUND
In this section, we present background knowledge necessary to understand the proposed technique
and implementations. Section 2.1 introduces the terminology used in the article, while Section 2.2
provides an overview of the Graal compiler.

2.1 Terminology
Optimizing compilers can be broadly categorized as ahead-of-time (AOT), also called static compilers,
and just-in-time (JIT), more broadly called dynamic compilers. Compilers apply a sequence of
transformations and optimizations on a portion of code received as input, called compilation unit.
Such code can consist of source code (in the case of an AOT compiler), or bytecode (typically in the
case of a JIT compiler that compiles bytecode during application execution). Both source code and
bytecode are impractical for most optimizations and for translation to machine code, so, before
applying optimizations, optimizing compilers usually transform the compilation unit to a more
suitable form, called intermediate representation (IR). We denote as IR language (IRL) the language
that defines the IR, i.e., the set of instructions that an IR can consist of.
Compilers usually perform manipulations in successive compiler phases (henceforth also just

called phases for short). Each phase takes an IR instance as its input, performs transformations by
manipulating the IR, and returns the manipulated IR as its output. Specifically, we refer to phases
whose main goal is to perform optimizations as optimization phases. Phases are performed one after
the other to compose a compilation pipeline. The pipeline always starts with a phase that parses the
source code (typically in the case of an AOT compiler) or bytecode (typically in the case of a JIT
compiler) to IR and ends with a phase that transforms the IR to low-level IR or directly to machine
code. Within the pipeline, the IRL does not remain the same, but can vary and progressively gets
closer to machine code, by reducing to instructions whose abstraction level is lower. For example, an
IR instruction that represents an array load can be transformed to another IR instruction indicating
a memory read from a certain address. We call the process of transforming the IR by removing
abstraction lowering, and the phases that perform lowering lowering phases.

2.2 Graal Compiler
Graal [29] is an open-source state-of-the-art compiler for the JVM implemented in Java. Even
though in this article we use Graal as a JIT compiler, Graal can be used both as an AOT and as a
JIT compiler. JVM implementations use Graal as a JIT compiler, and can load it as a plugin using
the JVM Compiler Interface (JVMCI) [54]. In Graal, a compilation unit is a Java method scheduled
for compilation along with all its callee methods that Graal decides to inline into it. Graal’s IR
is represented in a graph-based Static Single Assignment (SSA) [21] form where nodes represent
either expressions or statements, and directed edges define either the control or data flow of the
program [28, 29]. Graph nodes can be divided into two main categories: fixed and floating. Fixed
nodes define the control flow of the program, i.e., the execution order of the different instructions.
The predecessors of a fixed node must be always executed before the node itself. Hence, fixed nodes
are used when ordering is crucial. Examples of fixed nodes include loops, method invocations, and
lock acquisitions. Floating nodes fluctuate around the structure defined by fixed nodes, and are not
bound to a specific point in the control flow, since their execution order is purely determined by
data- and memory-ordering-dependencies. Floating nodes can represent, for example, arithmetic
operations or constants. This distinction allows Graal to perform optimizations such as constant
folding [117], strength reduction, code motion [30], and global value numbering [18] efficiently
without considering the exact position of the floating nodes until the very last compiler phases,
when both fixed and floating nodes are scheduled (i.e., ordered and mapped to basic blocks) and

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:5

Event-
Occurrence
Identification

§ 3.1

Event-Type
API

§ 4.1.1

(Step 1)

Instrumentation
Phase

Insertion
§ 3.2

Instrumentation
Phase API
§ 4.1.2

(Step 2)

Marker
Insertion
§ 3.3

Marker API
§ 4.1.3

(Step 3)

Instrumentation
Code

Generation
§ 3.4

Path Decoding § 4.2.2
Path Counting § 4.2.3
Path Cutting § 4.3

(Step 4)

Fig. 1. Overview of the proposed technique for accurate profiling.

translated into machine instructions. For more information, Duboscq et al. [28, 29] provide a detailed
description of the Graal IR.

The compilation pipeline of Graal is divided into three main parts called tiers, namely the high-tier
(initial tier), themid-tier, and the low-tier (final tier). Each tier represents concepts at different levels
of abstraction and uses a separate IRL. For example, the high-tier LoadFieldNode (specifying a load
of an object field) can be translated to the mid-tier ReadNode (specifying a read of a memory address).
While the high-tier applies high-level optimizations (such as method inlining), the mid-tier and
low-tier apply lower-level optimizations (such as arithmetic-division simplification or null-check
removal). A tier always concludes its execution with a lowering phase that transforms the current
IRL to the one accepted by the next tier. At the end of the low-tier, the IR is translated to platform-
independent low-level IR that does not consist of a graph-based SSA form anymore, but of basic
blocks of instructions that point to each other. This low-level IR is later used for register allocation
and subsequently machine-code generation for the architecture on which Graal is executed.

3 OPTIMIZATION-AWARE EVENT PROFILING
We now describe the proposed technique for accurate event profiling. Fig. 1 shows an overview of
our approach, which consists of four steps: identification of the event types of interest (Section 3.1),
determination of the target instrumentation points in the compilation pipeline (Section 3.2), insertion
of placeholder instructions that represent instrumentation (Section 3.3), and the generation of the
instrumentation code (Section 3.4). For each step, Fig. 1 reports the methodology section (above the
dashed line) and the corresponding implementation sections (below the dashed line).

3.1 Event-Occurrence Identification
Our goal is to profile event types, i.e., to record patterns of interest in a program execution.
Hence, the first step in our approach is to define the event-type set 𝐸. Since this technique targets
compilers, the set 𝐸 must be expressed in terms of the compiler’s IR. Certain event types can be
directly mapped to basic IR instructions, such as object-field loads or object allocations, while
others must be identified with static analysis.

Definitions. We define the graph IR𝑘 as the IR of a certain compilation unit after the 𝑘-th
compiler phase in the compilation pipeline. Given the total number of compiler phases 𝑁 , compiler
phases are numbered from 1 to 𝑁 and 𝑘 is defined within the interval [0, 𝑁]. Value 0 does not
represent a compiler phase but indicates the beginning of the compilation pipeline, before the
execution of the first compiler phase. An occurrence of the event type 𝑒 ∈ 𝐸 can be statically
identified by inspecting the patterns in IR𝑘 . Each event type 𝑒 can statically occur several times in
IR𝑘 . Hence, for each event type, it is possible to define a predicate that determines whether a certain
instruction] ∈ IR𝑘 represents an occurrence of that type. Events that are represented by patterns,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:6 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

i.e., event types that are composed of multiple instructions, are identified by a single instruction
for which the predicate returns true. We call this instruction the representative instruction. The
predicate typically describes the pattern around].

predicate𝑒 (]) ≡] represents 𝑒 (1)

We apply the predicate to each instruction in IR𝑘 and we obtain a set 𝐼𝑘,𝑒 that contains those
instructions that correspond to 𝑒 , i.e., the instructions that need to be instrumented:

𝐼𝑘,𝑒 = {] ∈ IR𝑘 | predicate𝑒 (]) is true} (2)

We note that the same instruction] ∈ IR𝑘 may represent the occurrence of multiple different
event types, i.e., given two event types 𝑒′ ∈ 𝐸 and 𝑒′′ ∈ 𝐸 such that 𝑒′ ≠ 𝑒′′, it may be that
both predicate𝑒′ (]) and predicate𝑒′′ (]) are true. In this case, both sets 𝐼𝑘,𝑒′ and 𝐼𝑘,𝑒′′ contain] and
subsequent steps of our approach instrument the same instruction] twice to profile both 𝑒′ and 𝑒′′.

Example. Consider the Character.valueOf method from the Java Class Library (JCL), which
returns a heap-allocated object that corresponds to a primitive 16-bit Unicode character (i.e., an
unsigned value that has a minimum value of 0 and a maximum one of 65535).
If the character value is less than 128, the object is loaded (load) from a pre-allocated array

arr, otherwise a new object is allocated on the heap with new :
static Character valueOf(char i) {

return i < 128 ? arr[(int)i] : new Character(i);
}

if

merge

load new

start

phi

return

object
caching

P(0)

<

C(128)

C(arr)

1

2

3 4

5

6

7

8

9

10 11

load
array

allocation

Fig. 2. Graal IR node for method
Character.valueOf.

Fig. 2 shows the Graal IR3 for this compilation
unit [28]. We define 𝐸 so that it contains three
event types. Two event types correspond to basic IR
instructions—load-array and allocation correspond to
load and new nodes, respectively. The third is a
complex event type that we name object-caching (intro-
duced in this example for illustration purposes), which
consists of any if where one branch loads an object
from an array using a primitive value as an index, and
the other allocates an object using that same primitive
value—to detect this, we must analyze the if and
its surrounding expressions. We consider the merge
corresponding to the analyzed if as the representa-
tive instruction of this event, hence, it is the only instruction to instrument and to include in the
instruction set.

We can identify the sets 𝐼𝑘,𝑒 as follows: 𝐼𝑘,load-array = {𝑛3}, 𝐼𝑘,allocation = {𝑛4} and 𝐼𝑘,object-caching =
{𝑛5}, where 𝑛𝑖 refers to the node with number 𝑖 in Fig. 2. The value of 𝑘 will be determined in the
next section (Section 3.2).

3We use the following conventions in every figure showing Graal IR. Fixed nodes are shown as white nodes with solid borders,
while floating nodes are represented as purple (dark gray in grayscale printing) nodes with dotted borders. Solid arrows
flowing from top to bottom represent the control flow, while dashed arrows flowing from bottom to top represent the data
flow. We report constants with the notation C(constant-value) and parameters with the notation P(parameter-index).
To uniquely identify nodes, we assign a progressive ID to each of them, reported at the top-left corner of the node. First, we
assign IDs to fixed nodes and then to floating nodes. Markers (Section 3.3.2) and instrumentation nodes (Section 3.4) are
numbered after the nodes of the target application.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:7

3.2 Instrumentation-Phase Insertion
The detection of the event occurrences of each type 𝑒 represented by the set 𝐼𝑘,𝑒 is performed by a
new compiler phase that we call instrumentation phase and denote as IP𝑒 . This phase implements
and applies the predicate function predicate𝑒 (]) to identify the instructions in 𝐼𝑘,𝑒 , and then inserts
the marker nodes.
The crucial problem in the instrumentation-phase insertion is determining the phase 𝑘 of the

compilation pipeline after which IP𝑒 should be added. Though the phase 𝑘 depends on the use case
(for example, a compiler developer might want to count the number of instructions after a certain
phase, knowing that later optimization phases may remove some of these instructions), in this
article, we focus on the common case where one wants to find a phase 𝑘 that allows accurately
quantifying the actual number of occurrences executed at runtime. We refer to such a phase with the
symbol 𝑘𝑒 and the term target phase. For example, given a compilation pipeline in which the number
of compiler phases is 𝑁 ≥ 5, an instrumentation phase IPobject-caching, and 𝑘object-caching = 5,
IPobject-caching would be inserted after the fifth compiler phase. We note that the position of the
target phase depends on the event type of interest 𝑒 ; hence, different instrumentation phases (one
for each event type) might be inserted in the compilation pipeline at different places.

In the following text, we first explain why finding 𝑘𝑒 is crucial and why inserting IP𝑒 at a phase
that is not the target phase (as defined above) would not guarantee an accurate profiling for 𝑒 , and
also show an illustrative example. Then, we detail our approach to detect the target phase.

Motivation. Inserting the instrumentation phase IP𝑒 at an arbitrary non-target phase 𝑘 in the
compilation pipeline can lead to two issues:

(1) If instrumentation is performed too early in the compilation pipeline, the profiler could instru-
ment occurrences that are removed by subsequent compiler optimization phases. Similarly,
the profiler might not instrument occurrences that are added by subsequent optimization
phases. In both cases, the instrumentation would be incorrect: the profiled value would be
higher or lower, respectively, than the actual number of occurrences at runtime.

(2) If instrumentation is performed too late in the compilation pipeline, an occurrence of interest
might not be profiled anymore because the compiler has lowered such an occurrence by
removing instructions that belong to a higher abstraction level. Hence, the profiler does not
have enough information to accurately detect the pattern.

Example. We illustrate the above issues with an example (written in Java). We consider the
load-array event type, i.e., an event type that represents a load of an element from an array, and a
simplified compilation pipeline composed of six compiler phases (hence 𝑁 = 6 and 𝑘 ∈ [0, 6]). The
compiler phases are reported below:

(1) Bytecode parsing parses the Java bytecode representation and creates the initial IR.
(2) Inlining [90] modifies the IR by replacing call sites with the bodies of the callees.
(3) Double read elimination replaces two consecutive loads to the same array element or object

field with a single load, storing the result in a temporary variable to exploit caching.
(4) Lowering [108] transforms the IR to a lower representation by removing abstraction. For

instance, array accesses are converted to raw memory accesses.
(5) Dead code elimination removes code whose execution does not affect program results.
(6) Machine code emission transforms the IR to platform-specific machine code.

Even though the compilation pipeline may seem too intricate for the current example, subsequent
examples will refer to it, which motivates its complexity.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:8 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

1 long sumPositive(long[] numbers) {
2 long sum = 0;
3 int length = numbers.length;
4 for (int i = 0; i < length; i++) {
5 boolean isPositive = numbers[i] > 0;
6
7 if (isPositive) {
8 sum += numbers[i];
9 }
10
11 }
12 return sum;
13 }

Fig. 3. Method sumPositive, which adds up the pos-
itive numbers of the specified array and returns the
sum.

1 long sumPositive(long[] numbers) {
2 long sum = 0;
3 int length = numbers.length;
4 for (int i = 0; i < length; i++) {
5 boolean isPositive = numbers[i] > 0;
6 eventCounters[loadArrayEvent] += 1;
7 if (isPositive) {
8 sum += numbers[i];
9 eventCounters[loadArrayEvent] += 1;
10 }
11 }
12 return sum;
13 }

Fig. 4. The sumPositive method (from Fig. 3) after
the execution of the IPload-array instrumentation
phase that is inserted at 𝑘 < 3.

1 long sumPositive(long[] numbers) {
2 long sum = 0;
3 int length = numbers.length
4 for (int i = 0; i < length; i++) {
5 long element = numbers[i];
6 eventCounters[loadArrayEvent] += 1;
7 boolean isPositive = element > 0;
8 if (isPositive) {
9 sum += element;
10 }
11 }
12 return sum;
13 }

Fig. 5. The sumPositive method (Fig. 3) after the
execution of the IPload-array instrumentation phase
inserted at 𝑘 = 3.

k load-array
0 1 500 000 000
1 1 500 000 000
2 1 500 000 000
3 1 000 000 000
4 0
5 0
6 0

Table 1. Occurrences of the load-array event type in
the sumPositive method (from Fig. 3) for different
instrumentation phase indices 𝑘 .

Let’s assume that instrumentation code simply increments a counter associated to each event type
(i.e., the profiler counts event occurrences over time). Counters are stored in the array eventCounters

of element type long and are indexed using the constant loadArrayEvent, as shown below:
// instrumentation code of a load -array
eventCounters[loadArrayEvent] += 1;

We analyze the Java sumPositive method shown in Fig. 3. This method takes a long array as a
parameter and returns the sum of its positive elements.

In the following text, we show how the accuracy in profiling load-array varies by inserting the
instrumentation phase IPload-array at every 𝑘 ∈ [0, 6]. We focus in particular on the load-array
occurrences profiled in method sumPositive, which represents our compilation unit. We execute
the sumPositive method a single time by providing an array of length 109 as a parameter. This
array contains 0.5 · 109 positive elements and 0.5 · 109 negative elements. As a result, the condition
at line 7 evaluates to true and leads to the execution of line 8 in exactly 50% of the iterations.

Table 1 reports the corresponding number of profiled load-array occurrences for each 𝑘 . Below,
we illustrate the transformations performed by each compiler phase, and the effects that they have
on IPload-array inserted at 𝑘 :

• 𝑘 = 0 (before the bytecode-parsing phase): the instrumentation phase is inserted at the
beginning of the compilation pipeline. Hence, it instruments the array loads at lines 5 and 8
of Fig. 3, producing the code in Fig. 4. Since the numbers array provided as a parameter has

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:9

length 109, the array access at line 5 is executed once for each loop execution (109 times)
while the array access at line 8 is executed in 50% of the loop executions (0.5 · 109 times).
Therefore, the profiler tracks 1.5 · 109 load-array occurences.

• 𝑘 = 1 (after the bytecode parsing phase) and 𝑘 = 2 (after the inlining phase): since the
bytecode parsing phase simply changes representation without losing any abstraction, and
the inlining phase does not inline any method calls, the instrumentation phase instruments
the same load-array occurrences (as previously shown in Fig. 4) and returns the same result
as in 𝑘 = 0.

• 𝑘 = 3 (after the double read elimination phase): Fig. 5 shows the Java code corresponding
to the IR produced by the execution of both the double read elimination optimization and
instrumentation phase. In particular, the compiler has replaced the two consecutive array
loads with a single load whose result is stored in the local variable element (line 5 of Fig. 5).
The instrumentation phase detects and instruments only this load-array occurrence at line 5,
executed 109 times, by inserting the counter update at line 6. We note that this is the actual
amount of runtime load-array occurrences, as array loads will not be further optimized.

• 𝑘 = 4 (after the lowering phase): even though loads from arrays are still executed at run-
time, the lowering phase removes the array-load abstraction, converting it to raw memory
reads. The instrumentation phase is not able to detect load-array occurrences anymore. As
a consequence, no instrumentation code is inserted and the profiler reports 0 load-array
occurrences.

• 𝑘 = 5 (after the dead-code-elimination phase) and 𝑘 = 6 (after the machine code emission
phase): due to lowering, load-array occurrences are not detectable by instrumentation phases.
Hence, the number of reported occurrences of load-array remains 0.

We conclude that 𝑘 = 3 is the only phase where IPload-array can be inserted to instrument the
actual array loads occurring at runtime. Indeed, with 𝑘 < 3, instrumentation would be inaccurate
and with𝑘 > 3, load-array occurrences would not be detectable anymore. Even thoughwe presented
a single example that revolves around the load-array type, almost all interesting event types are
similarly altered by the compilation pipeline. Hence, it is fundamental to determine the target value
of 𝑘 for each event type of interest.

Determining the Target Phase. As shown by the previous example, event occurrences must
be detected and instrumented after they have been fully optimized by the compiler but before they
are transformed into a low-level representation (and hence are not available anymore).
We insert the phase IP𝑒 after a target phase 𝑘𝑒 , defined as the last phase where the IRL allows

identifying 𝑒 and hence the last phase for which 𝐼𝑘,𝑒 may be non-empty. As a consequence, 𝑘𝑒 is
either the last phase of the compilation pipeline or the phase that precedes the lowering of 𝑒 (after
which the transformed IRL does not allow the identification of 𝑒). Determining 𝑘𝑒 thus requires
some understanding of the compiler that the technique is applied to—the implementer must know
which lowering phase lowers which event types.

We note that, depending on the event type and compilation pipeline of a specific compiler,
there may be multiple compiler phases other than the target phase 𝑘𝑒 (defined by our approach)
that ensure an accurate profiling of an event type 𝑒 . Given the target phase 𝑘𝑒 , we can identify a
compiler phase 𝑦𝑒 ≤ 𝑘𝑒 such that 𝑦𝑒 is either the last phase preceding 𝑘𝑒 that may optimize event
occurrences of type 𝑒 , or 𝑘𝑒 itself if 𝑘𝑒 optimizes event occurrences of type 𝑒 . A compiler phase
𝑐 allows accurate profiling of the event type 𝑒 if 𝑦𝑒 ≤ 𝑐 ≤ 𝑘𝑒 . Compiler phases not included in
this range do not allow accurate profiling of 𝑒 since phases preceding 𝑦𝑒 would lead to inaccurate
profiles (the optimizations performed by 𝑦𝑒 would not be considered in the profiles) and phases
following 𝑘𝑒 do not allow the identification of 𝑒 anymore. Among the suitable phases, we consider

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:10 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

the last phase as the target such that optimizations in the range 𝑦𝑒 ≤ 𝑐 < 𝑘𝑒 do not need to employ
resources to visit nodes corresponding to instrumentation code.
We also note our technique does not prevent us from accurately instrumenting an event type

𝑒 whose occurrences may be “lowered” at two different positions in the compilation pipeline. In
these cases, we simply separate the event type 𝑒 into two disjoint event types 𝑒′ and 𝑒′′, and define
their predicates 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑒′ and 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑒′′ such that 𝑘𝑒′ and 𝑘𝑒′′ can be different.
Consider for example an event type raw-load that represents a load of a value from a location

specified as an offset relative to an object, without performing preliminary null checks. In the
Graal’s IR, a raw-load event type corresponds to a RawLoadNode that can be inserted into the IR
both in the high-tier or in the mid-tier. In the high-tier, RawLoadNodes are inserted when parsing
Unsafe.get* methods [67] while in the mid-tier, RawLoadNodes are inserted together with monitor
acquisitions—a RawLoadNodes is used to fetch the mark word (i.e., a word containing information
related to the status of the lock) associated with the object whose monitor must be acquired.
Depending on where they are inserted, RawLoadNode are lowered at two different positions in the
compilation pipeline, i.e., end of the high-tier or of the mid-tier, respectively. For this reason, it is
not possible to determine a single target phase 𝑘raw-load that allows accurate profiling of raw-load.

To accurately profile raw-load, we define two disjoint event types raw-load’ and raw-load”, their
predicates 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒raw-load′ and 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒raw-load′′ , and the target phases 𝑘raw-load′ and 𝑘raw-load′′ ,
such that we can accurately capture every raw-load occurrence before it is lowered. In particular,
raw-load’ and raw-load” correspond to the raw-load occurrences before the high-tier and mid-tier
lowering, respectively. The total number of raw-load occurrences can be computed by summing
the occurrences of raw-load’ and raw-load”.

3.3 Marker Insertion
The previous Section 3.2 details the identification of the target phase after which inserting IP𝑒 . This
instrumentation phase identifies and instruments the IR instructions that correspond to the event
occurrences of type 𝑒 . Even though IP𝑒 could insert all the instrumentation instructions in the IR
after the target phase, this approach would reduce the accuracy of the collected metrics.

In this section, we first illustrate why inserting instrumentation code at phase 𝑘 would produce
inaccurate measurements. We explain why and how instrumentation code can perturb compiler
optimizations (Section 3.3.1), even if performed after the target phase 𝑘 . Then, we detail how our
methodology avoids the mentioned issues (Section 3.3.2).

1 public void sumFirstTenPositiveLong () {
2 long[] numbers = new long [10];
3 for (int i = 1; i <= 10; i++) {
4 numbers[i-1] = i;
5 }
6
7 sumPositive(numbers);
8 }

Fig. 6. Method sumFirstTenPositiveLong, which
calls the sumPositive method, previously defined
in Fig. 3.

3.3.1 Instrumentation Perturbs Compiler
Optimizations. Generating and inserting the
instrumentation code for quantifying the event
occurrences of type 𝑒 (instead of inserting mark-
ers) after the target phase 𝑘𝑒 may perturb subse-
quent compiler optimizations, leading to inaccu-
rate measurements of 𝑒 itself as well as of other
event types. A subsequent compiler optimization
phase that processes IR perturbed by the instru-
mentation will in some cases not add or remove
event occurrences in a way that reflects what was
optimized in an uninstrumented run. As a result, the profiled event counts differ from what the
event occurrences would be in an uninstrumented run. In the following text, we provide several
motivations for why this behaviour is problematic, each accompanied by an illustrative example.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:11

1 public void sumFirstTenPositiveLong () {
2 long[] numbers = new long [10];
3 for (int i = 1; i <= 10; i++) {
4 numbers[i-1] = i;
5 }
6
7 long sum = 0;
8 int length = numbers.length;
9
10 for (int i = 0; i < length; i++) {
11
12
13 boolean isPositive = numbers[i] > 0;
14 if (isPositive) {
15 sum += numbers[i];
16 }
17 }
18 }

Fig. 7. The sumFirstTenPositiveLong method
(Fig. 6) after inlining the sumPositive method
(Fig. 3).

1 public void sumFirstTenPositiveLong () {
2 long[] numbers = new long [10];
3 for (int i = 1; i <= 10; i++) {
4 numbers[i-1] = i;
5 }
6
7 long sum = 0;
8 int length = numbers.length;
9
10 for (int i = 0; i < length; i++) {
11 long element = numbers[i];
12 eventCounters[loadArrayEvent] += 1;
13 boolean isPositive = element > 0;
14 if (isPositive) {
15 sum += element;
16 }
17 }
18 }

Fig. 8. The sumFirstTenPositiveLong method
(Fig. 7) after the IPload-array instrumentation phase
inserted at 𝑘 = 3. The instrumentation code is shown
in red (gray in grayscale printing).

Motivation 1. Instrumentation code may contain side effects that alter subsequent optimizations,
control flow, and instruction scheduling.

Example 1. We consider the load-array event type, the simplified compilation pipeline intro-
duced in Section 3.2, and the sumFirstTenPositiveLong method in Fig. 6. The method declares a
long array (line 2) and initializes it with the first 10 long numbers, starting from 1 (lines 3-5). Then,
the sumFirstTenPositiveLong method calls the sumPositive method defined in Fig. 3, providing
the previously declared variable numbers as a parameter and ignoring its return value (line 7).
Essentially, this method invocation adds together the elements of the numbers array.

1 public void sumFirstTenPositiveLong () {
2 long[] numbers = new long [10];
3 for (int i = 1; i <= 10; i++) {
4 numbers[i-1] = i;
5 }
6
7 int length = numbers.length;
8 for (int i = 0; i < length; i++) {
9 eventCounters[loadArrayEvent] += 1;
10 }
11 }

Fig. 9. Instrumented sumFirstTenPositiveLong
method (Fig. 8) after the dead-code-elimination
phase.

We summarize the effects of the simplified com-
pilation pipeline on the
sumFirstTenPositiveLong method when there is
no instrumentation:

• Inlining: the inlining optimization inlines
the call site at line 7 of Fig. 6 producing the
code conceptually shown in Fig. 7. In Fig. 7,
notice that the sum variable is only declared
(line 7) and incremented (line 15).

• Double read elimination: double read elim-
ination optimizes the array accesses at
lines 13 and 15 (Fig. 7), as already explained
in the previous example.

• Dead code elimination: since the sum vari-
able is not further used after the second loop and the program does not perform any side
effects, the whole body of the sumFirstTenPositiveLong method is considered dead code and
it is removed.4 As a result, the sumFirstTenPositiveLong method contains no code.

4We note that the compiler must perform several analyses to determine that the code is actually dead code that can be safely
removed. For example, the compiler must prove that loops are bounded, that every array access is in-bound, and that the
code does not have side-effects (including exceptions). Here, we simplify the explanation for the sake of exemplification.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:12 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

We now consider the simplified compilation pipeline with IPload-array inserted at 𝑘load-array = 3.
The Java code that corresponds to the IR produced after the execution of IPload-array is shown in
Fig. 8.

The instrumentation code (shown in line 12) produces side effects and influences the subsequent
dead-code-elimination phase that can safely remove only lines 7, 11, and 13-16 of Fig. 8. The
instrumented Java code that corresponds to the IR produced after the execution of dead-code-
elimination phase is shown in Fig. 9. The subsequently generated machine code contains more
event occurrences, more instructions, and a different control flow w.r.t. the optimized machine code
that would have been generated without the presence of instrumentation code.

We conclude that the instrumentation code inserted by IPload-array at 𝑘 = 3 prevents the removal
of dead code, thus perturbing the collection of load-array occurrences themselves. The profiler
records 10 runtime load-array occurrences instead of 0. Even though in this example we considered
a single load-array event type, we note that other event types are similarly affected. For example,
while the correctly optimized code (i.e., the empty sumFirstTenPositiveLong method) contains no
allocation occurrences, the instrumented code (Fig. 9) contains one allocation occurrence (line 2).

Motivation 2. Instrumentation code increases the size of the IR, which reduces the code-size
budget of the subsequent optimization phases that make decisions based on the IR size.5

Example 2. The inlining optimization uses the current code size of the compilation unit to
determine whether to inline a particular callsite or not. If the code size has not reached a certain limit,
a particular method call is inlined, which increases the current code size [5, 80, 90, 103, 118]. Once
the limit is reached (which may be a function of the compilation unit hotness, the size of the specific
callee, and other factors), the algorithm stops inlining method calls, to avoid generating compilation
units whose size considerably increases the compilation time of the subsequent phases [90], or
causes cache performance degradation [17] (and also to prevent endless inlining of recursive calls).
Instrumentation code can prevent inlining of some callsites, and in the worst case, of every

callee, if the IR reaches the code-size limit. Consequently, the compiler not only emits more method
calls, but also cannot perform subsequent optimizations that inlining would enable (this is usually
the case for a compiler that mainly relies on intraprocedural analysis, like Graal [28], and most
mainstream method-based JIT compilers [16, 47, 57, 70, 78]). As illustrated in the previous example,
inlining of the sumPositive method (line 7 in Fig. 6) is a prerequisite for removing the dead code. If
the sumPositive method is not inlined, the compiler must assume that the method produces side
effects and hence cannot remove the call site. The profiler in this case produces event counts that
do not correspond to runs of the non-instrumented program.

To increase profiling accuracy, our technique avoids direct insertion of the instrumentation code.
We next propose a strategy that solves the aforementioned problems.

3.3.2 Markers. In our methodology, while the instrumentation phase 𝐼𝑃𝑒 identifies the event
occurrences of type 𝑒 , it does not insert the instrumentation code to track the occurrence of 𝑒 .
Instead, it inserts a placeholder instruction that we callmarker, and which denotes the execution of a
certain event type. The marker is a special instruction in the IR that has no memory effects, nor other
side-effects, and is not a data dependency—from a compiler’s point-of-view, the markers are no-ops
that do not influence compilation decisions.6 Their code-size and cycle-count estimates [62] are set

5The code-size budget may be one among several budgets that the compiler uses to make optimization decisions. For
example, a compiler may make decisions based on the execution time of the compilation unit. Currently, our technique does
not prevent changes in execution-time driven optimization decisions.
6Instrumentation code that will later replace markers (Section 3.4) have side-effects. However, until that point in the
compilation pipeline, markers are no-ops from a compiler’s perspective.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:13

to zero, to avoid perturbing budget-driven optimizations. Markers are converted to instrumentation
code at the end of the compilation pipeline, and are removed from the IR before the final lowering
step (Section 3.4).

object
caching

alloc
load
array

11 12

13

if

merge

load new

start

phi

return

P(0)

<

C(128)

C(arr)

1

2

3 4

5

6

7

8

9

10 11

Fig. 10. Marker insertion in method
Character.valueOf.

Definitions. We define the set 𝑀 as the set of
marker types such that each event type 𝑒 ∈ 𝐸 uniquely
corresponds to a marker𝑚𝑒 ∈ 𝑀 . The instrumentation
phase IP𝑒 is in charge of inserting markers of type𝑚𝑒

whenever an occurrence of 𝑒 is encountered. Depend-
ing on 𝑒 , the marker must either precede or follow the
event occurrence. The first case applies for event types
represented by instructions that split the control flow
(i.e., instructions that have more than one successor,
such as if and switch). Conversely, the second case
applies to types that 1) may not be entirely and success-
fully executed because of potential runtime errors, or 2)
are represented by instructions that denote the merging
of multiple control-flow paths. In this way, we ensure
that, in case of errors or exceptions, the corresponding
event occurrence is not profiled; moreover, we insert a
single marker in case of a control-flow split or merge.
Since markers represent placeholder instructions,

they do not belong to the original IRL and do not have
a corresponding machine code representation. In this way, every subsequent compiler phase
can “ignore” the marker nodes and avoid changes in behaviour. Markers must be replaced by
instrumentation code defined on the original IRL before machine code emission, as explained in
Section 3.4.

Example. Fig. 10 shows the valueOf method from Section 3.1. The marker (shown in yellow
with dashed border, light gray in grayscale printing) for the object-caching event occurrence must
follow the corresponding merge instruction, since it might not be executed if it is placed in
one of the branches. Instead, a marker for the allocation event type must be placed after the new
instruction, to prevent the event occurrence from being counted in case of errors (for example,
running out of memory). Similarly, a marker follows the load-array event occurrence to avoid
the event-count increase if a null -pointer or an index-out-of-bounds exception occurs.

Discussion. Here we discuss two alternative designs to markers for the implementation of the
proposed strategies and we compare them to our approach.
As a first alternative design, instead of inserting markers to track event occurrences, instru-

mentation phases may insert IR instructions annotated as “instrumentation code” with code-size
and cycle-count estimates set to zero (similarly to markers). Even though this approach may work
correctly, it comes with caveats that require major changes in the implementation of the compiler.
Every optimization phase should process and optimize annotated and not-annotated instructions
separately to avoid changes in compilation decisions. Consider for example the case where in-
strumentation code uses memory-access instructions (read-add-write). Even if the costs for the
heuristics were made zero, memory-access instructions still affect the memory graph and read-write
reordering decisions in the compiler, whereas marker nodes do not.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:14 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

As a second alternative design, instrumentation phases may mark event occurrences by annotat-
ing the corresponding program instructions. In this design, each program instruction is annotated
with an event-type set containing the event types the instruction represents. Event-type sets
are copied when duplicating instructions, combined when combining instructions, transferred
to the lowered instructions corresponding to the annotated instructions, and deleted together
with instructions. Similar to markers, event-type sets are replaced by instrumentation code before
machine code emission. This alternative design strongly couples annotations with instructions,
possibly leading to better accuracy w.r.t. markers. The reason is that markers are independent of
the lowered instructions that correspond to the event occurrences. Subsequent compiler phases
may duplicate, move, and remove the lowered instructions but not the corresponding markers. Still,
both when using markers and event-type set annotations, the instruction selection in the backend
compiler may introduce inaccuracies due to combinations across block boundaries. We consider
the event-type-set-annotation approach part of future work.
In Graal, where no existing API allows easily implementing event-type set annotations7, we

consider high-level marker nodes a good compromise between accuracy and compiler-code main-
tainability.

3.4 Instrumentation-Code Generation

if

load new

start

P(0)

<

C(128)

C(arr)

1

2

3 4

5
6

7

store
10

8

load
9

C(1)
+

13

12

C(cnt)
11

Fig. 11. Instrumentation-code generation in
method Character.valueOf.

After all compiler and instrumentation phases are
performed—i.e., after the (𝑁 +𝑀)-th phase, where 𝑀
is the number of instrumentation phases injected in
the compilation pipeline—our technique detects and
replaces the markers, producing an IR in the origi-
nal IRL. We refer to this process as instrumentation-
code generation. We define a new instrumentation-code-
generation phase 𝐼𝐶𝐺 , which is injected into the com-
pilation pipeline after phase 𝑁 +𝑀 . The phase 𝐼𝐶𝐺 pro-
cesses the markers and implements a concrete scheme
for recording event occurrences.

Example. If our technique is used to count the oc-
currences of each event type, the phase generates code that increments the counters specific to
each event type 𝑒 . On the other hand, if our technique is used to produce an event-trace (i.e.,
an ordered list of executed event occurrences), then the phase generates code that, for each 𝑒 ,
appends a representation of the occurrence of 𝑒 into a trace-buffer. The marker insertion allows
performing several optimizations during this phase, as explained later in Section 4.2. In Fig. 11, the
object-caching marker (Fig. 10, node 13) is replaced with the incrementation of a counter at the
address cnt (in the IR, the instrumentation code is shown with darker colors, while code of the
target application is semi-transparent).

4 IMPLEMENTATION
This section describes the implementation of our technique in the Graal compiler [28, 29, 62, 73, 91,
109, 120]. As shown in Fig. 1, Section 4.1 describes our event-definition, instrumentation-phase,
and marker APIs. Then, Section 4.2 presents our approach to generating instrumentation code, and
proposes two efficient path-profiling strategies to reduce the profiling overhead. Finally, Section 4.3

7In Graal, nodes are instantiated throughout the codebase using their constructor. To support event-type set annotations,
we would need to analyze all (and refactor some of) the allocation sites to use another constructor that takes the event-type
set annotation as a parameter. Similar changes would need to be implemented in Graal’s low-level IR.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:15

describes a modification of the standard path-profiling algorithm [9] that makes the two proposed
strategies applicable to modern JIT compilers.

4.1 Events, Markers, and Instrumentation Phase
In this section, we illustrate our event-definition API (Section 4.1.1), instrumentation-phase API
(Section 4.1.2), and marker API (Section 4.1.3).

1 interface EventType {
2 String name();
3 Node eventAt(Node node);
4 Class <Tier > tier();
5 Class <Phase > phase();
6 }

Fig. 12. Interface for event type definition.

4.1.1 Event-Type API. In our implementation, event
types are represented as Java classes. In particular, each
𝑒 ∈ 𝐸 must implement the EventType interface defined
by the simplified Java code shown in Fig. 12. The name

method defined at line 2 returns a unique intuitive name
represented as a Java String that describes the event
type. The predicate𝑒 (]) function is implemented using the
eventAtmethod defined at line 3 where] is represented as an IR node. Recall that the instrumentation
markers may be placed before or after the target node (depending on 𝑒). Therefore, in contrast to
predicate𝑒 (]), the eventAt method does not return a boolean , but the IR node after which the
instrumentation marker must be inserted. If the node provided as a parameter does not represent
an event occurrence, then eventAt returns null . Since 𝑘𝑒 depends only on 𝑒 , 𝑘𝑒 is defined
within the event type itself as the combination of the two methods tier and phase, which represent
the position of the phase in the Graal compiler, declared at lines 4 and 5, respectively.

After all the event types are defined, we add them to the set𝐸 represented by a Java Set<EventType>.

1 abstract class InstrumentationPhase
2 extends Phase {
3 abstract EventType eventType ();
4 void mark(Graph graph) { /* ... */ }
5 }

Fig. 13. Class for instrumentation phase definition.

4.1.2 Instrumentation Phase API. As shown
in Fig. 13, an implementation of the class
InstrumentationPhase (which allows defining
instrumentation phases) must provide two meth-
ods: eventType (which returns the event type
that the phase is supposed to mark) and mark
(which locates the position and inserts the mark-
ers in the IR Graph provided as a parameter). The default implementation of the mark method
computes the schedule of floating instructions (i.e., an assignment of floating nodes to fixed-node
positions [18]), invokes eventAt for each node in the IR, and then inserts the markers in graph
. For more complex pre-marking analyses the users can implement their own marking logic by
overriding mark .

The instantiation and insertion of the different instrumentation phases is performed during the
setup of the Graal compiler. We iterate over the user-provided list of instrumentation phases and
we call the tier and phase methods (cft. Fig. 12) of the corresponding eventType to determine
the insertion position in the compilation pipeline.

1 class EventMarkerNode
2 extends FixedWithNextNode {
3 final EventType type;
4 }

Fig. 14. Class that represents marker
nodes in the Graal IR.

4.1.3 Marker API. Markers are represented by a new single
IR node called EventMarkerNode, shown in Fig. 14. The event
type of the occurrence is identified by the type field (line 3).
Since markers must be inserted at a specific point of the

control flow of the program, EventMarkerNode extends the
FixedWithNextNode class, i.e., the class used by Graal to de-
fine fixed nodes that have successors. If the marked event type

is represented by a fixed node, then the marker is inserted after the node that eventAt returns. If
the marked event type is represented by a floating node, then the instrumentation phase must find

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:16 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

the fixed node at which the floating node returned by eventAt will be positioned before code
generation—for this reason, instrumentation phases run Graal’s scheduling algorithm to produce
the schedule (i.e., the ordering) for floating instructions [18] (however, to decrease the compile-time
overhead, the phases that do not work with floating nodes can disable the computation of the
schedule).8

4.2 Instrumentation-Code Generation
At the end of Graal’s compilation pipeline, we insert an additional phase that generates instru-
mentation code, i.e., a phase that converts marker nodes to code that records event occurrences.
In this article, we focus on event counting, hence “recording” in our case means incrementing a
thread-safe counter. As an alternative example, in implementations that aim to produce program
traces, recording would mean appending information to a trace buffer.
In the examples in this section, we consider the following expression, which represents the

creation of a wrapper around a boxed character in Java:
Optional.of(Character.valueOf(x))

if

merge

start

phi

P(0)

<

C(128)

C(arr)

1

2

5

8

9

10 11

new6

12

alloc

return7

15

load new3 4

alloc14

if13

Fig. 15. Graal IR for the expression
Optional.of(Character.valueOf(x)).

Since the code size of the Character.valueOf

method is small, we assume that in this example,
Character.valueOf is inlined into the Optional.of

method [5, 80, 90, 123].
We record an if event type 𝑒0 that represents the
execution of if statements, and the allocation event
type 𝑒1 introduced in Section 3.2. Fig. 15 shows the
IR of this expression, where allocation occurrences
are represented by the new nodes (numbers 4 and 6)
and if occurrences are represented by if nodes
(number 2). The yellow (light gray in grayscale print-
ing) marker node 13 is associated to the if node
2. Nodes 14 and 15 represent markers inserted by
the instrumentation phase and associated to new
nodes 4 and 6, respectively.

In what follows, we describe three different strate-
gies for inserting the instrumentation code, i.e., re-
placing the markers in Fig. 15 with nodes that repre-
sent instructions that perform the instrumentation.
First, we introduce a simple naive approach that
will be used for comparison purposes (Section 4.2.1).
Then, we propose two alternative strategies to re-
duce the execution overhead, based on path profil-
ing [9] (Sections 4.2.2 and 4.2.3).

4.2.1 Direct event counting. A simple approach of implementing instrumentation-code genera-
tion is to replace each marker node with an increment at the memory location of the event-type
counter. We refer to this strategy with the term direct event counting, and we show the correspond-
ing IR in Fig. 16, where IR nodes of the original expression are reported with a lighter color than
8We always instrument the occurrence of a node before it is lowered. For floating nodes, their lowering includes creating a
schedule and placing them into basic blocks before converting them to a lower-level representation. This implies that our
scheduling result corresponds directly to the scheduling that is immediately done by the lowering phase that follows the
insertion of the markers.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:17

the instrumentation code. Counters are stored into the cnt array (nodes 15, 21, and 27) in which
the 𝑖-th element cnt[i] represents the counter associated to 𝑒𝑖 . For example, cnt[0] is associated
to the if event type, and cnt[1] is associated to the allocation event type. As the IR contains three
different occurrences, the figure shows three different counter updates framed in light blue boxes.
Each counter update uses a load node (number 13, 19, and 25), the cnt array (nodes 15, 21, and 27),
and the constant index associated to the event type (nodes 18, 24, and 30) to obtain the current
value of the counter. This value is then used by a + node (number 17, 23, and 29) to compute the new
incremented value by adding the constant 1 (node number 16, 22, and 28). A store node (number
14, 20, and 26) updates the counter by storing the incremented value into memory.

if

merge

load new

start

phi

P(0)

<

C(128)

C(arr)

1

2

3 4

5

8

9

10 11

12

store
20

load

C(cnt)
21

C(1)
22

+
23

return7

new6

counter
update

store
26

load

C(cnt)
27

C(1)
28

+
29

counter
update

25

19

store
14

load

C(cnt)
15

C(1)
16

+
17

counter
update

13

C(0)
18

C(1)
24

C(1)
30

Fig. 16. Direct event-counting IR for
Optional.of(Character.valueOf(x)).

Complexity. The benefit of this approach is that
the memory overhead is low: we allocate a memory
region (i.e, the cnt array) for the counters, one for
each event type, hence the memory consumption
is 𝑂 (|𝐸 |), where 𝐸 is the set of event types. How-
ever, the execution time overhead is 𝑂 (𝑅), where 𝑅
is the number of runtime event occurrences. Hence,
this approach may be convenient when the event-
marker frequency is low, or when the event’s compu-
tational cost significantly outweighs the cost of the
counter update. We note that in this article we focus
on the common case of many event types and highly
frequent event markers where counter updates are
expensive (as we show in Section 6). For this rea-
son, Sections 4.2.2 and 4.2.3 propose two alternative
strategies to overcome this problem.

4.2.2 Path decoding. To reduce the overhead of
accessing memory at every event-marker location,
we can exploit path profiling [9]. Path profiling sep-
arates the control-flow within the compilation unit
into a set of paths. Then, instead of incrementing
the event count at every marker, the event count is
updated at the end of the path. In this way, if some
occurrences are repeated along the path, we pay the
cost of the memory update only once. We call this
strategy path decoding.

The IR of the Optional.of(Character.valueOf(x))
expression (shown in Fig. 15) has two paths in total,
we call them 𝑃0 and 𝑃1. The path 𝑃0 includes the first
branch of the if statements and consists of the fixed
nodes <1, 13, 2, 3, 5, 6, 15, 7>.9 𝑃1 includes
the second branch of the if statements and hence fixed nodes <1, 13, 2, 4, 14, 5, 6, 15,

7>. Along 𝑃0, there is one if occurrence and one allocation occurrence, while along 𝑃1 there is
one if occurrence and two allocation occurrences. Since the allocation type repeats along 𝑃1, it
is more efficient to increment the count by two units only once at the end of the path instead

9To indicate a path, we use the ordered list of the node IDs composing the path, enclosed in angle brackets < · > .

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:18 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

of incrementing it by one unit twice. We note that in practice (unlike in the example, which is
simplified for clarity) most event types often occur several times along the same path, making the
benefits of this strategy in real-world workloads more significant (the differences are quantified in
Section 6).

if

merge

load new

start

phi

P(0)

<

C(128)

C(arr)

1

2

3 4

5

8

9

10 11

new6

12

phi15

C(0)

C(1)

14

13

store
23

load
+

26

C(cnt)
24

22

C(0)
25

path
tracking

event-count
update

store
34

...other events

load
+

37

C(cnt)
35

33

C(1)
36

event-count
update

C(pec)
17

path
decoding load

16

C(0)
20

+
21

·
18 C(2)

19

C(pec)
28

path
decoding load

27

C(1)
31

+
32

·
29 C(2)

30

if
a
llo

ca
tio

n

return7

Fig. 17. IR with path decoding for
Optional.of(Character.valueOf(x)).

We keep track of the occurrences of each
event type in each path with a path-decoding
table 𝑝𝑒𝑐 , in which the 𝑗-th row represents the
𝑗-th path 𝑃 𝑗 and the 𝑖-th column represents the
𝑖-th event 𝑒𝑖 . We implement the decoding table
as a contiguous memory area that stores rows
of length |𝐸 | one after another. The number of
occurrences of the event 𝑒𝑖 along the path 𝑃 𝑗 are
stored in the element at index 𝑗 · |𝐸 | + 𝑖 . For in-
stance, given the current IR, 𝑝𝑒𝑐 = [1, 1, 1, 2],
since entries 0 and 1 represent the first row
and hence refer to 𝑃0, entries 2 and 3 repre-
sent the second row and refer to 𝑃1: even in-
dices refer to the if event type (first column),
and odd indices refer to the allocation event
type (second column). As an example, the num-
ber of allocation occurrences (𝑒1) along 𝑃1 is
𝑝𝑒𝑐 [𝑗 · |𝐸 |+𝑖] = 𝑝𝑒𝑐 [1·2+1] = 𝑝𝑒𝑐 [3] = 2. During
the program execution, the JIT compiler incre-
mentally extends the decoding table for each
compilation request, so that it contains infor-
mation about the newly added paths. During
instrumentation-code generation, and after the
control flow is separated into a set of paths, the
compiler populates the table 𝑝𝑒𝑐 by statically
counting markers along those paths. For a par-
ticular compilation unit, the contents of the table
are never updated but always queried to retrieve
intermediate results.
Fig. 17 shows the IR after the execution of

an instrumentation-code-generation phase that
implements the path-decoding strategy. While
event counts are still stored into the cnt array
(nodes 24 and 35), the instrumentation code is
divided into three steps reported in the light blue
boxes. These steps are identified by the corre-
sponding labels: path tracking, which maintains
the ID of the current path that is being executed,
path decoding, which extracts the number of occurrences along that path, and event-count update,
which increments the event count by that number. As the first step, this strategy enumerates all the
paths, and inserts a path identifier along each path in the control flow graph using the approach

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:19

proposed by Ball and Larus [9]. In the path tracking block, the phi 10 node 15 represents the path
identifier, and evaluates to either 0 or 1 depending on the path (nodes 14 and 13, respectively).

Then, this strategy inserts one path-decoding block and event-count update block for each event
type in the set 𝐸 where at least one path ends. Multiple paths ending at the same instruction exploit
the same path-decoding and event-count update block by using a different path identifier. In the
figure, the path-decoding and event-count update blocks for one event type refer to both 𝑃0 and 𝑃1,
since they end at the same instruction (node 7). The IR first updates the counter associated with the
if event type, and then the counter associated to the allocation event type. Consider the allocation
event type: the path identifier produced by node 15 is used in the path-decoding part to compute
the index 𝑗 · |𝐸 | + 𝑖 , and load the precomputed allocation-event count from the path-decoding table
𝑝𝑒𝑐 (nodes 27-32). In particular, 𝑗 is the result of node 15, |𝐸 | is represented by node 30 (constant 2),
and 𝑖 by node 31 (constant 1). Finally, the event-count update block uses the decoded event count
for the respective path (node 27) to increment the existing counter in the cnt array. To do so, we
generate IR similar to the one produced in the direct event counting strategy.
Even though this strategy adds more nodes than direct event counting (i.e., the path-tracking

and path-decoding blocks), we note that the benefits in terms of profiling overhead are substantial
when many event types are profiled, as we show in Section 6.2.

Complexity. Let, across all compilation units, 𝑃𝑒 be the set of paths in which event type 𝑒
appears, and let 𝑃𝐸 =

⋃
𝑒∈𝐸 𝑃𝑒 be the set of all paths in which at least one event occurrence appears.

During compilation, path decoding must store up to |𝐸 | values into the decoding table for each
path (to track the respective count of each event type in that path). The total memory consumption
is therefore 𝑂 (|𝐸 | · |𝑃𝐸 |).

One advantage of path decoding is that the event counts are maintained in real-time. This makes
it applicable to JIT compilers and VMs, because statistics can be gathered while the program is
executing—for example, the GC can use allocation-count statistics to dynamically scale genera-
tions [15], or the JIT compiler can deoptimize the code to select a better lock implementation [26].
The disadvantage of this approach is that the overhead grows with the size of 𝐸—the path-decoding
and event-count update blocks are injected once for each event type that occurs in any of the paths
that lead to the instrumentation point. Thus, the execution-time overhead is 𝑂 (|𝐸 | · 𝜋−1) in the
worst case, where 𝐸 is the event-type set, and 𝜋 is the average path length.

4.2.3 Path counting. When real-time updates are not a requirement, the execution-time overhead
of the path decoding strategy can be lowered by counting only the number of times that a path
was executed, instead of updating the actual event counts. The event counts can then be decoded
using the decoding table 𝑝𝑒𝑐 offline. We call this strategy path counting. In our implementation, we
install a VM-shutdown hook that performs bulk event decoding.

An example of path counting is shown in Fig. 18. Since this strategy does not update event counts,
we remove the cnt array and we introduce a 𝑝𝑐 array (node 18) to store the dynamic path-execution
counts, instead. The 𝑗-th element 𝑝𝑐 [𝑗] represents the counter associated with the path 𝑃 𝑗 (where 𝑗

is a global index across all compilation units). For example, 𝑝𝑐 [0] is associated with 𝑃0, and 𝑝𝑐 [1]
is associated with 𝑃1. While the path-tracking part remains unchanged w.r.t. the one reported in
Fig. 17, all path-decoding and event-count update blocks are replaced with a single path-count update
block (nodes 16-20). The path identifier 𝑗 returned by path tracking (previously used to compute
the index to access the path-decoding table) is now used to access 𝑝𝑐 [𝑗]. The path-count update

10Graal’s phi nodes represent the 𝜙-function of the SSA form, i.e., a function that given 𝑁 branches with the same join
point, each associated to a value, returns the value associated to the branch that has been taken in the current execution.
Unlike the original description by Ball and Larus [9], we use SSA values to represent the current value of the path ID.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:20 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

block just increments 𝑝𝑐 [𝑗] by one unit, to signal the fact that the path was executed once. We
remark that 𝑝𝑒𝑐 , which contains the number of static occurrences of each event type for each path,
is computed via static analysis at compile time and never accessed at runtime. For this reason, the
address of the decoding table 𝑝𝑒𝑐 does not appear in the IR.

if

merge

load new

start

phi

P(0)

<

C(128)

C(arr)

1

2

3 4

5

8

9

10 11

new6

12

phi15

C(0)

C(1)

14

13

store
17

load
+

20

C(pc)
18

16

path
tracking

path-count
update

C(1)
19

return7

Fig. 18. IR with path counting for
Optional.of(Character.valueOf(x)).

Via offline analysis, we can compute the num-
ber of event occurrences in each path, and there-
fore obtain the global event counts. To retrieve
the global event count of an event type 𝑒𝑖 , we
sum the product of 𝑝𝑐 [𝑗] multiplied with the
number of occurrences of that event type in the
𝑗-th path (obtained by accessing the decoding
table 𝑝𝑒𝑐 as it was accessed in the path-decoding
strategy) for each path 𝑗 , that is: 𝑐𝑜𝑢𝑛𝑡 (𝑒𝑖) =∑
𝑗 ∈ [0, |𝑃𝐸 |)

𝑝𝑐 [𝑗] · 𝑝𝑒𝑐 [𝑗 · |𝐸 | + 𝑖].

Complexity. The memory consumption of
this approach is 𝑂 (|𝐸 | · |𝑃𝐸 |), since the path-
decoding table 𝑝𝑒𝑐 , which contains the number
of static occurrences of each event type for each
path, has length |𝐸 | · |𝑃𝐸 |, while the length of
array 𝑝𝑐 is equal to the total number of paths
|𝑃𝐸 |. However, we note that the decoding table
could be stored in secondary storage, and ac-
cessed only during the shutdown phase of the
program to do the decoding, which decreases
the main-memory requirements to 𝑂 (|𝑃𝐸 |). Our
implementation keeps the path-decoding table
in main memory, because none of the benchmarks depleted the memory that was preallocated for
path counting.

The execution-time overhead is reduced from𝑂 (|𝐸 | ·𝜋−1) to𝑂 (𝜋−1), where 𝜋 is the average path
length. In contrast to the path-decoding strategy, at the end of each path, the instrumentation code
performs a single path-counter update and does not separately update each event type that occurs
in any of the paths that lead to the instrumentation point. Hence, the execution-time overhead
depends only on the average path length 𝜋 .

4.3 Path-Cutting Optimization
In this section, we first motivate why the standard path-profiling algorithm [9] may lead to an
intractable overhead in a modern optimizing compiler such as Graal, making it impossible to directly
apply the original algorithm to implementing the path-decoding (Section 4.2.2) and path-counting
(Section 4.2.3) strategies. Then, we propose a modification to the path-profiling algorithm that
makes the proposed strategies usable in Graal.

Motivation. The main downside of path-decoding and path-counting strategies is that path
profiling can produce an exponentially large number of paths |𝑃𝐸 |, which drastically affects both
memory consumption and the runtime of the algorithm. For applications running on a JVM with a
modern JIT compiler, this memory overhead is in most cases prohibitively high. Concretely, the
path-profiling algorithm does not compute paths belonging only to a single Java method but paths
within the entire compilation unit (we recall that a compilation unit is a Java method scheduled for

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:21

compilation along with all its callee methods that the compiler decides to inline into it). 11 At the end
of the compilation pipeline, where our technique inserts instrumentation code, the path-profiling
algorithm computes paths using the control-flow of an IR whose size is bloated not only due
to inlining [90] but also due to optimizations such as loop unrolling [61], path duplication [63],
and various code lowering [108]. For this problem to manifest itself, it is not necessary that the
path-count explosion happens in every compilation unit—even if a single compilation unit contains
a control-flow pattern that contains an exponential number of paths, profiling becomes infeasible.

Example. We executed multiple experiments to profile the Renaissance benchmark suite [94]
with a profiler that implements the path-counting strategy. The evaluation settings that we used
were the same as the ones reported later in Section 5.2), with the difference that the profiler
implements the standard path-profiling algorithm [9] and not the modified algorithm that we
propose in this section. The profiler assigns a unique positive int identifier to each path. Using an
int[] array to represent the counters, it is possible to represent sets of paths 𝑃𝐸 where |𝑃𝐸 | ≤ 231.
By executing certain benchmarks (for example, this is consistently reproducible in several

compilation units in akka-uct [1], als [122], and reactors [82, 84, 92]), we noticed that the standard
path-profiling algorithm produces a total path-count |𝑃𝐸 | that exceeds 231, making it impossible to
represent all paths. To see why this happens, consider the control-flow graph in Fig. 19a, in which
blue boxes represent basic blocks (i.e., non-branching sequences of fixed nodes). Each time that the
control-flow branches and then merges again at a basic block 𝐵, the total number of paths from the
entry-point to 𝐵 must be multiplied with the total number of paths from 𝐵 to the control-flow sink.
If there are 𝑁 consecutive 4-way branch-and-merge patterns, then the total number of paths is 4𝑁 .

In the Graal IR, branch-and-merge patterns are quite common after the last lowering—the major
contributors are monitorenter and monitorexit instructions, which are lowered to fast-
path spin locks and slow-path OS calls [26]; object allocations, which are lowered to thread-local
allocation buffer (TLAB) bumps [39] on the fast path, and foreign calls on the slow-path; and
polymorphic inlining [24], which inlines and dispatches between several possible call targets.

Discussion. There are multiple ways to overcome this limitation. One approach is to increase
the number of identifiers—for example, a long-typed path identifier can represent sets of paths
𝑃𝐸 such that |𝑃𝐸 | ≤ 263. However, we note that a total path-count |𝑃𝐸 | = 231 already results in a
prohibitively high memory consumption that impairs the practical usage, even if we consider a
favorable scenario with an implementation that tries to minimize memory allocation. Consider the
case when |𝑃𝐸 | = 231. The size of the path-count array 𝑝𝑐 , which stores the 8-byte counters, would
be |𝑝𝑐 | = 231 · 8B = 16GB. Moreover, given |𝐸 | = 43 (since the profiler used for this experiment
can track 43 different event types, as further discussed in Section 5.2) and considering a memory-
optimized path decoding table 𝑝𝑒𝑐 that stores each element as byte (i.e., a path-decoding table
in which each event type may occur at most 255 times in the same path, which is a generous
assumption—it is likely that there are occasional compilation units that violate this restriction), the
memory consumption of 𝑝𝑒𝑐 would be |𝑝𝑒𝑐 | · 1B = |𝐸 | · |𝑃𝐸 | · 1B = 43 · 231 · 1B = 86GB. Hence, the
total memory consumption would be |𝑝𝑐 | + |𝑝𝑒𝑐 | = 16GB + 86GB = 102GB. Note that this would be
the memory footprint for only a single compilation unit in which that path explosion happened.
This memory overhead is prohibitively high for practical purposes.

Moreover, even in cases in which this memory footprint is acceptable, the compilation-time
overhead of populating the decoding table is prohibitive for a JIT compiler. In the benchmarks
in which we witnessed the path-count explosion, the compiler threads that were assigned to

11We note that our technique does not introduce any new phase to resolve or inline additional methods to compute more
interprocedural paths. Our goal is to observe the code emitted by the compiler without altering the compiler behavior.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:22 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

the corresponding compilation units were blocked for hundreds of seconds while populating the
path-decoding table.

Another approach could be to maintain the path counts in a dynamically sized sparse array (for
example, a hash table), and to reconstruct the decoding table from the persisted IR on-demand
during shutdown, but only for those paths that have a non-zero path count (speculating that most
paths are never executed during the program runtime). We did not pursue this approach for two
reasons: first, hash-table updates are more expensive than single-memory location increments, and
our goal is to keep the overheads low. Second, in some compilation units, the program may execute
all path combinations in the worst case, which would again lead to a prohibitive memory overhead.
Due to the huge memory consumption even in the optimistic scenario outlined above, and the

fact that other workloads produce even larger total path counts |𝑃𝐸 |, we decided to implement an
approach that decreases the total number of paths |𝑃𝐸 | by cutting them into smaller pieces.

Path cutting. To lower the total path-count |𝑃𝐸 |, and consequently reduce memory consumption
and compilation time, we modify the standard path profiling algorithm [9] to introduce artificial
path cuts. When building the directed-acyclic graph (DAG) of the compilation unit’s control-flow
graph (CFG), we cut the graph in half at merge nodes, i.e., at nodes with multiple inbound control-
flow edges, by introducing dummy edges to the sink node, i.e., the single node with no outbound
control-flow edges. We call this optimization path cutting.

11

10

SOURCE

SINK

|P|=4

|P|=1

|P|=1|P|=1

1

6

3 4

8 9

|P|=16

|P|=1
2

|P|=1
5

|P|=4|P|=4|P|=4
7

|P|=4

(a) Example CFG

11

10

|P|=1

|P|=1

|P|=1|P|=1

1

6

3 4

8 9

|P|=1

|P|=1
2

|P|=1
5

|P|=1|P|=1|P|=1
7

|P|=1
 CUT

 CUT

(b) CFG with artificial path cuts

10

|P|=1|P|=1

|P|=1|P|=1

1 6

3 4 8 9
|P|=1

2
|P|=1

5
|P|=1|P|=1|P|=1

7
|P|=1

11

0

12

|P|=1

ARTIFICIAL SOURCE

ARTIFICIAL SINK

(c) DAG with dummy edges after the cut

Fig. 19. Example of path cutting.

Fig. 19 shows an exam-
ple of path cutting. In par-
ticular, we report the CFG
of a certain compilation unit
without artificial path cuts
(Fig. 19a), the CFG that high-
lights the artificial path cuts
(Fig. 19b), and the result-
ing DAG with the dummy
edges after the cut (Fig. 19c).
Consider the first CFG in
Fig. 19a, where blue nodes
with solid borders represent
basic blocks and are num-
bered from 1 to 11. Block
1 represents the source (en-
try point) and 11 represents
the block with a sink node.
Black arrows that connect
basic blocks represent the
control-flow edges. Next to
each basic block, the fig-
ure reports the number of
paths |𝑃 | that lead to the ba-
sic block if path cutting is
not performed. For example,
while node 2 is reached by a single path (<1, 2>), four paths lead to node 6 (<1, 2, 6>, <1, 3, 6>,
<1, 4, 6>, and <1, 5, 6>). Since the CFG has a single sink node, i.e., node 11, the number of paths
|𝑃 | = 16 associated to the sink is the total path-count in that compilation unit.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:23

We note that the two subgraphs composed of nodes 1-6 and 6-11 represent the typical control-
flow of a switch statement. In modern compilers, such a control-flow is often generated when
performing polymorphic inlining [24]—inlining virtual method calls by introducing a switch case
on the dynamic type of the receiver object. In our example, the two subgraphs could have been
generated by inlining two consecutive virtual calls where each of them has four possible call
targets. We remark that the example represents a simplified scenario, while in real-world programs,
compilation units have far more complex CFGs. Without path cutting, the instrumentation code
would be inserted only at node 11 and would handle all 16 paths, i.e., path tracking selects one
among the 16 paths that lead to node 11 and provides the path identifier to the instrumentation
code of either path decoding or path counting.
The second CFG (Fig. 19b) conceptually explains path cutting by showing the effect it has on

number of paths |𝑃 | leading to any node. In particular, after cutting the graph at nodes 6 and 11,
every node has |𝑃 | = 1.
In the DAG of Fig. 19c, we show the actual transformation performed by the algorithm on the

CFG. The figure shows the three subgraphs created by the two artificial cuts, i.e., the first subgraph
is composed of nodes 1-5, the second subgraph is composed of nodes 6-10, and the third subgraph
is composed of only node 11. First, path cutting adds an artificial source node (white node 0 with
dashed border) and an artificial sink node (white node 12 with dashed border). The artificial source
node is connected to the actual source node (number 1) with a dummy edge shown in dashed light
blue. Similarly, the actual sink node (number 11) is connected to the artificial sink node. Then, the
inbound edges of nodes 6 and 11 (i.e., where artificial cuts are performed) are replaced with two
dummy edges from the artificial source node leading to such nodes 6 and 11. Finally, the sink nodes
of every subgraph (nodes 2-5 and 7-10) are connected with a dummy edge to the artificial sink node
12. This is similar to how loop-back edges are typically eliminated in standard path-profiling [9].
The total path-count |𝑃𝐸 | is now equal to 9 (instead of 16), i.e., the sum of the |𝑃 | associated to
the sink nodes of every subgraph (nodes 2-5, 7-10, and 11). Instrumentation code is inserted at
such sink nodes. For example, instrumentation code inserted at node 2 handles the path <1, 2>,
instrumentation code inserted at node 3 handles the path <1, 3>, and instrumentation code inserted
at node 11 handles the path <11>.

Even though path cutting increases the number of insertion points of instrumentation code (in
Fig. 19c, instrumentation code is inserted 9 times instead of only once at node 11), the total path
count |𝑃𝐸 |, and hence the memory consumption, decrease. This optimization makes path-profiling
strategies viable in a modern optimizing compiler such as Graal. In Section 6, we evaluate the
path-decoding and path-counting strategies with path cutting enabled.

5 USE CASES
In this section, we describe two use cases where our approach was used to analyze the behaviour of
Graal during JIT compilation. We first motivate the use cases by illustrating the common strategies
used by compiler developers to analyze optimizations and debug issues (Section 5.1); then, we
describe the settings used to obtain experimental data (Section 5.2). In Section 5.3, we describe a use
case in which our approach explains why a performance improvement occurs, and in Section 5.4,
we investigate an unexpected slowdown introduced by one of Graal’s compiler phases.

5.1 Motivation
When developing new optimizations, compiler developers need to carefully analyze the effects of
their changes on the compiled code to assess the benefits. However, this task can be challenging.
Modifying the IR representation of the program in one phase not only affects the finally emitted
machine code, but also the behaviour of other subsequent compiler phases (that will receive a

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:24 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

different IR as input). Due to the complexity of the compilation pipeline, the effect of this change can
be unpredictable. Moreover, since JIT compilation becomes non-deterministic when compilation
is done by compiler threads (and not by application threads), reproducing a specific, previously
observed behaviour in a subsequent run can be difficult [41, 72].

A straightforward way to assess the effect of an optimization is to compare the execution time of
a benchmark when the optimization is activated and deactivated. When the performance impact is
significant, this can confirm that an optimization yields a speedup, but the execution time alone does
not identify the precise source of the speedup. A more illuminating approach is to use debugging
tools, such as Ideal Graph Visualizer (IGV) [74, 121] for C2 and Graal, to compare the IRs of the
compiled units in which most of the execution time is spent. While this strategy in principle allows
determining whether the optimizations work as intended, this is a tedious, time-consuming task in
practice—after inlining, the IR typically contains thousands of nodes.
With our technique, compiler developers can compare runtime-event metrics that describe the

runtime behavior of the program. These metrics can explain the effects of the different compiler
phases. The collected metrics are more informative than those provided by commonly used tools
such as JDK Flight Recorder (JFR) [75] or Oracle Developer Studio [77], since they can track event
types that exist in the IR but not in the low-level machine code. Example of such event types
include the lock implementation that the compiler selects [25–27, 108] (e.g., in HotSpot, whether
the lock is biased, inflated, recursive, or stubbed), safepoints [23], GC-card writes [116], GC-write
barriers [52], deoptimizations [50], concrete implementations of typechecks [20], polymorphic-
inline-cache hits [51, 90], and guards denoting speculative optimizations. In addition, metrics may
reveal information that is not always visible from the execution time or clock cycles [11, 98–100],
since thread scheduling may introduce stalls, contention, or non-deterministic garbage collection.
In the case of compiler bugs that compromise program performance, our methodology can be used
to pinpoint the source of the slowdown, providing dynamic information on the IR instructions that
are analyzed. In this sense, our metrics simplify debugging and help compiler developers identify
problems.

5.2 Experimental Settings
The experimental data collected in the presented use cases was obtained with an event profiler for
Graal, which is implemented as described in Section 4.2.3 and 4.3, i.e., resorting to the path-counting
strategy and the path-cutting modification to efficiently count the number of event occurrences in
JIT-compiled code. Table 2 lists the 43 event types that we collect with our profiler. For clarity, event
types are divided in categories based on their semantics. The name of each category is reported in
bold before the set of event types it contains. For each event type, we report the unique event-type
name and a brief description. In the following text, we use the term metric to refer to an event
counter.

Analyses were conducted on a machine equipped with an 8-core Intel Xeon E5-2680 (2.7 GHz) and
64 GB of RAM. Frequency scaling, turbo boost and hyperthreading were disabled, CPU governor
was set to “performance”. The Xeon E5-2680 CPU supports the x86 Advanced Vector Extensions
(AVX), but not the Haswell New Instructions (AVX2). The machine ran the Linux Ubuntu operating
system (kernel version 5.4.0-58-generic), and a custom GraalVM Enterprise build that includes our
event profiler. The VM is based on an open-source fork of OpenJDK 8 that adds JVM Compiler
Interface (JVMCI) capabilities to the VM [76].

We perform the analyses described in the use cases on Renaissance [93, 94], a benchmark suite
with a total of 25 benchmarks used for evaluating compilers [49, 56, 68, 79, 127]. We let each
benchmark in Renaissance warm up by executing it for a given number of iterations (specified by
the documentation) until dynamic compilation and garbage-collection ergonomics are stabilized,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:25

before activating our profiler. We do not execute the program using a more deterministic execution
mode (e.g., disabling background compilation) since we favor a setting suitable to be used in a
production environment. The event counts reported in this section are collected only during the
last (steady-state) iteration.

Table 2. List of profiled event types.

Event-Type Name Description

allocations
allocation Heap allocation.
array-duplication Heap allocation of an array by copying an existing one.

arithmetics
arithmetic Every arithmetic operation including but not limited to the next ones.
int-div-rem Integer division/reminder operation.

float-arithmetic-32
Every 32-bit floating point arithmetic operation including
but not limited to the next one.

float-div-rem-32 32-bit floating point division/reminder operation.

float-arithmetic-64
Every 64-bit floating point arithmetic operation including
but not limited to the next one.

float-div-rem-64 64-bit floating point division/reminder operation.

arraycopies
arraycopy Execution of System.arraycopy.

atomics
cas Atomic compare-and-swap operation.

branches
if Branch operation.
loop-end Loop backedge.

invokes12

foreign-call Invocation of a native C/C++ function.
invokestatic Invocation of a static Java method.
invokespecial Invocation of a Java constructor, private method, or superclass method.
invokevirtual Invocation of a Java instance method.
invokeinterface Invocation of a Java interface method.

locks
biased-lock-entry Biased lock acquisition [101] (only ever held by a single thread).
cas-lock-entry Compare-and-swap-based lock acquisition (short spin-based lock).
inflated-lock-entry Inflated lock acquisition [101] (lock’s information in a separate object).
recursive-lock-entry Recursive lock acquisition (acquiring an already held lock).
stubbed-lock-entry Stubbed lock acquisition (VM call).

memory-accesses
store Store to an object field or array element.
load Load from an object field or array element.

(Continues on next page)

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:26 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Event-Type Name Description

memory-barriers

membar-store-load
Execution of a memory barrier, i.e., an operation to enforce
ordering constraints on memory accesses.

safepoints

safepoint
Event type that indicates a position in the IR where all threads are
paused so that the VM can execute stop-the-world operations
(e.g., garbage collection, root-pointer scanning, or classloading).

speculative-ops

guard
Every guard execution, i.e., an IR node that potentially deoptimizes
based on the outcome of a certain condition.
This event type includes but is not limited to the next four.

guard-bounds-check Guard that performs an array-bounds check.
guard-class-cast Guard that performs a class-cast check.
guard-null-check Guard that performs a null check.
guard-unreached-code Guard that checks the presence of code that should not be reached.
deoptimization Compiler deoptimization to transfer the control back to the interpreter.

typechecks
instanceof instanceof check.
typeswitch Lookup based on the type of the given input.

unwinds

unwind
Unwind operation, i.e., find and execute the exception handler
defined in a caller method.

vectorization
bulk-map Transformation of a sequence of elements.
bulk-read Read of a sequence of elements.
bulk-write Write of a sequence of elements.
bulk-initialize Initialization of a sequence of elements using one value.

wait-notify
wait Invocation of Object.wait.
notify Invocation of Object.notify.
notify-all Invocation of Object.notifyAll.

writebarriers
writebarrier Writebarrier operation needed by the garbage collector.

5.3 Analyzing Compiler Optimization Phases
Here, we describe how compiler developers can use our methodology to analyze the effect of an
optimization and understand the reason behind a performance improvement. We first outline the
general approach, and then use it to explain the reason for a speedup achieved by the optimistic
aliasing analysis (OAA) phase in Graal.
12We note that we do not provide an invokedynamic event type since the bytecode parser transforms invokedynamic
instructions into invokestatic and invokevirtual.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:27

Approach. Given a compiler optimization phase𝜔 that wewant to analyze, we aim at identifying
all metrics that significantly differ due to 𝜔 . Increasing or decreasing the occurrence of a given
event type is usually the primary goal of adding a new phase, since this change should in turn
improve the effect of subsequent compiler phases on the compilation unit, ultimately decreasing its
execution time. For example, one goal of the method-inlining phase is to reduce overheads due to
method calls, and thus decrease the value of the metrics in the invokes category. Measuring the
changes in the metric allows analyzing the behaviour of the optimization 𝜔 .
We define Γ as the set of all phases in the compilation pipeline (thus 𝜔 ∈ Γ). Then, we define

count (𝑝,𝑚, Υ) as a function that returns the mean value of a given metric𝑚 across executions of
the program 𝑝 , while executing only a subset of phases Υ ⊆ Γ. The reason why we define count as
a mean value is that, due to the inherent non-determinism of JIT compilation (when the compiler
threads are separate from the application threads), the value of the each metric is a random variable.
This is because the optimizations make decisions based on asynchronously collected profiles, which
makes the IR of the compilation units slightly different in each execution.
For example, count (scrabble, allocation, Γ) and count (scrabble, allocation, Γ \ {𝜔}) return the

mean value of the allocation metric for the execution of the scrabble benchmark with and without
the 𝜔 phase, respectively. To obtain these values in practice, we repeat the scrabble program many
times, and compute the mean.

Our goal is to determine the set of metrics {𝑚} whose mean values differ by more than a given
threshold Y (𝑝,𝑚), between one execution with 𝜔 and one without 𝜔 of the same program 𝑝 . We
call this set𝑀𝑝 , where 𝑝 is one program taken from the set of all the possible programs Π.𝑀𝑝 is
defined as follows:

𝑀𝑝 = {𝑚 | |count (𝑝,𝑚, Γ) − count (𝑝,𝑚, Γ \ {𝜔}) | > Y (𝑝,𝑚)} (3)

The Y (𝑝,𝑚) threshold allows us to extract only a subset of the metrics that report a significant
difference, and allows us to ignore small variations caused by non-determinism of the JIT compi-
lations in different executions of the same program (even when the program itself is completely
deterministic). In turn, we define Y as follows:

Y (𝑝,𝑚) = max(count (𝑝,𝑚, Γ), count (𝑝,𝑚, Γ \ {𝜔})) · 𝑡 (4)

The parameter 𝑡 represents the tolerated percentage difference between the two values, and
can be tuned to extract different subsets of metrics. Higher values of 𝑡 restrict the result set to the
metrics that differ the most, while low values of 𝑡 enlarge this set.

Our approach consists of collecting metrics and evaluating Formulas 3 and 4 on a significant set
of programs Π, in this way identifying metrics that are most affected by the optimization 𝜔 .

Optimistic Aliasing Analysis. We use the aforementioned method to analyze the effects of
Graal’s optimistic aliasing analysis (OAA) phase on the Renaissance benchmark suite. The OAA
phase speculatively inserts information into the IR about which object pointers are the same (i.e.
are aliased) and which are different. The aliasing information can be utilized by optimizations
such as read elimination, write elimination, GC-write-barrier elimination, or vectorization [10]. For
instance, if two pointers are confirmed to be aliased, then some of their GC write barriers can be
fused. Similarly, if two array pointers do not alias, then element copying between the corresponding
arrays can be vectorized (because they do not overlap). In practice, it is a priori unclear which
optimizations are improved (and to which extent) when adding an implementation of OAA to a
complex compiler such as Graal. We noticed that enabling OAA introduces significant speedups
in certain benchmarks, i.e., up to 15% in the als benchmark, but we do not know whether the

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:28 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Metric (m) count(als,m, Γ) count(als,m, Γ \ {OAA})
bulk-map 989 105 986 71 523 670
bulk-read 503 935 809 45 313 789
bulk-write 517 377 287 60 224 210
bulk-initialize 457 782 740 830 084
loop-end 937 458 858 2 914 938 151
if 8 459 893 954 9 574 417 323
arithmetic 18 709 056 784 42 322 473 348
float-arithmetic-64 1 326 420 147 5 675 174 306

Table 3. Metrics significantly affected by the optimistic aliasing analysis (OAA) phase in the als benchmark.

performance gain is due to vectorization, GC-write-barrier elimination, or some other optimization.
Hence, we analyze the impact of OAA with our profiler.
We apply the aforementioned approach, setting the parameters of Formulas 3 and 4 as follows:

𝜔 = OAA, Π = Renaissance benchmarks, and 𝑡 = 0.1. We execute the benchmark suite using our
profiler, turning OAA on and off. Then, we collect the set𝑀𝑝 for all benchmarks in 𝑝 ∈ Π. We notice
that all the𝑀𝑝 sets are empty, apart from𝑀als , whose metrics are reported in Table 3. The values
in the table indicate that OAA has a significant effect on als, as several metrics vary by orders of
magnitude. In particular, the vectorization metrics (i.e., bulk-map, bulk-read, bulk-write, and bulk-
initialize) are much higher when OAA is enabled, suggesting that OAA enables the vectorization of
more loops. The loop-end and if metrics (i.e., the number of loop iterations and branch instruction
executions, respectively) confirm this statement—since vector operations decrease the number of
loop iterations, as the vectorization metrics increase, the loop-end and ifmetric decrease. Moreover,
vectorization decreases floating point scalar operations related to the als benchmark and scalar
arithmetic operations required to compute loop indexes and memory addresses. This explains
the decrement of the float-arithmetic-64 and arithmetic metrics, respectively. We note that, even
though the bulk-read and bulk-write metrics are significantly affected by OAA, the table does not
report the high-level load and storemetrics, meaning that OAA does not have a significant effect (in
the sense of Equations 3 and 4) on the number of accesses to object fields and array elements. The
main difference is in the accesses that can be parallelized by vectorization: when OAA is enabled,
most of these accesses are vectorized, and when OAA is disabled, most of them are scalar.

From these results, we can conclude that the OAA phase in Graal mainly improves vectorization,
while other phases do not seem significantly affected. This finding implies that the 15% performance
speedup in als from enabling OAA is mostly caused by the vectorization phase.

Discussion. Our approach allowed us analyzing the effects of OAA by profiling the benchmarks
in two settings—with OAA activated and deactivated. The values of the collected metrics clearly
pinpointed that the OAA phase mainly improves vectorization. With this knowledge, one may
think that we could have reached the same conclusion by inspecting the execution time of the
benchmarks, activating and deactivating OAA and vectorization individually. While this method
easily allows validating our conclusion a posteriori, it is unpractical a priori for two reasons. First,
without already knowing that the OAA phase mainly improves vectorization, one would need to
activate and deactivate all the phases individually to find the one whose deactivation leads to a
slowdown that is close to the speedup enabled by OAA, which most likely requires significant
computational time. Second, a drop in performance when deactivating OAA can imply that some
other optimization was affected (not necessarily vectorization), potentially pointing the compiler

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:29

Metric (m) count(scala-doku,m, Γ) count(scala-doku,m, Γ \ {CDTG})
allocation 164 016 436 4 932 271
instanceof 1 020 482 952 581 007 038
load 1 260 071 141 1 101 575 841
invokestatic 346 730 590 133
invokevirtual 36 789 588 141 577
if 3 628 779 099 2 482 745 508
arithmetic 2 481 575 004 2 004 573 745
safepoint 162 328 445 40 192 560
guard 1 472 294 639 794 692 405

Table 4. Metrics significantly affected by the convert deoptimizations to guards (CDTG) phase in the scala-
doku benchmark.

developer to the wrong conclusion. Instead, our approach can easily find a clear cause-effect
correlation by just profiling metrics in two settings, saving significant computational time.

5.4 Simplifying Debugging
We now describe a case study in which our profiler helped us identify the cause of a slowdown. In
particular, we noticed that Graal’s convert-deoptimizations-to-guards (CDTG) phase introduces an
unexpected slowdown (around 7%) when executing the scala-doku benchmark. This benchmark
heavily exercises Scala collections [71, 88], and the hash-trie data structure [6, 83, 85–87, 89]. We
would expect a compiler phase to consistently speed up the program, or at least to not cause
slowdowns. Hence, we are interested in understanding the reasons for the performance slowdown
to fix the issue.

Graal uses deoptimization nodes to represent deoptimization points in the IR [50], which transfer
the control back to the interpreter. In addition, Graal uses guard nodes, i.e., nodes that represent
a potential deoptimization [29], which happens only when a certain condition is violated. The
CDTG phase finds and converts branches that end with a fixed deoptimization node to fixed guard
nodes. Fixed guard nodes are later transformed to floating guard nodes, and this conversion usually
enables subsequent optimizations—due to the less ordering constraints between floating nodes, it
is often possible to pull guards out of loops, or coalesce guards when the condition of one guard
implies the other guard’s condition. For example, if two guards occur next to each other, one with
condition “x instanceof Integer” and another “x instanceof Number”, then the second condition is
always true (Integer is a subtype of Number in Java), and the corresponding guard can be removed.
To analyze the cause of the slowdown in CDTG, we follow the approach from the previous

section—we collect the metrics of interest in scala-doku including and excluding CDTG, and obtain
the𝑀scala-doku set of metrics that differ significantly. Table 4 reports these metrics, obtained with
Formulas 3 and 4, and the following parameters: 𝜔 = CDTG, 𝑝 = scala-doku, and 𝑡 = 0.1.
We identify now metrics in Table 4 that may be correlated. For convenience, we define𝑚- =

count (scala-doku,𝑚, Γ \ {CDTG}) and 𝑚+ = count (scala-doku,𝑚, Γ) for a certain metric 𝑚. For
example, we write 𝑖 𝑓- to indicate count (scala-doku, if, Γ \ {CDTG}). Since CDTG converts deopti-
mization nodes to guard nodes, we expect guard+ to be significantly higher than guard-. Indeed,
the former is almost twice the latter, as CDTG has introduced (guard+ − guard-) ≈ 678 million
guard-node executions.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:30 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

In a successive phase, guard nodes are lowered and become again if branches (i.e., back to a
lower-level abstraction, from which code can be more easily generated). If the quantity (if + − if -)
is roughly the same as (guard+ − guard-), then the additional if nodes would be caused by the
lowering of the guard nodes introduced by CDTG. However, this is not the case: as we can see from
the table, (if + − if -) amounts to roughly 1.2 billion, which is far above 678 million. This implies
that other phases caused a significant increase in if nodes, and were thus influenced by CDTG.

Consider the instanceof metric in Table 4, which is typically related to if nodes, since typechecks
are often executed in conditional statements. We can see that CDTG also causes the execution of
(instanceof + − instanceof -) ≈ 440 million more instanceof nodes. The joint increment of if and
instanceof can be a sign that additional compiler-generated instanceof nodes were executed. For
example, with polymorphic inlining [51], the compiler can emit an if-elseif chain of typechecks
whose conditions fail more often. This chain is created based on the receiver-type profile at the
respective callsite—the chain checks against most probable receiver types first, and less probable
ones later. In case of a successful typecheck, a direct call (which can be inlined) is inserted. The
if and instanceof metrics suggest that CDTG negatively affects the receiver-type profiles that
polymorphic inlining relies on when emitting the if-elseif chain, which in turn causes the execution
of more typechecks, leading to a slowdown.
To verify our conclusion, we determined the hottest compilation unit of the scala-doku bench-

mark,13 which is HashTrieSet.foreach, and we analyze the IR of this single method before and after
performing CDTG. As expected, we found callsites at which the profiles used for the polymorphic
inlining were more polluted with wrong types in the execution that uses CDTG compared to the
execution without CDTG. We found that the differences in deoptimizations caused different compi-
lation orders, so different callers of the HashTrieSet.foreach method were compiled at different
points in time, which furthermore caused the differences in the receiver-type profiles that the
interpreter collected at callsites within HashTrieSet.foreach.

To summarize, using our profiling approach, we were able to explain the 15% performance
gain obtained by the OAA phase in als and to identify the unexpected cause of a 7% performance
slowdown introduced by the CDTG phase in scala-doku, without manually comparing the IR of
the method, which is an error-prone and time consuming approach. Our profiler was essential
in collecting the metrics of interest, since existing tools [75, 77] are not able to collect low-level
compiler internal metrics such as the guard count. We reported the issue with CDTG to the Graal
developers who validated it and are currently considering potential solutions to avoid the reported
performance degradation.

6 PERFORMANCE EVALUATION
In this section, we evaluate the proposed profiling approach. We first present the experimental
setup in Section 6.1, and analyze the execution-time overhead of our technique in Section 6.2. Then,
we evaluate the compilation-time in Section 6.3, the code-size overhead in Section 6.4, and the
memory consumption in Section 6.5.

6.1 Evaluation Settings
We perform our experiments using the same machine and experimental setting that were de-
scribed in Section 5.2. In addition to Renaissance [93–95], we evaluate our approach on the
DaCapo [13] benchmark suite, using the input size and the number of warmup iterations re-
ported in Table 5. From DaCapo, we exclude benchmarks tomcat, tradebeans, and tradesoap due
13While path counts could be used to deduce the most frequently executed compilation unit, this can also be done with
various external tools, and we used Oracle Developer Studio [77].

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:31

DaCapo Benchmark Input Size # w.u.

avrora large 20
eclipse large 10
fop default 40
h2 huge 10
jython large 20
luindex default 40
lusearch-fix large 20
pmd large 20
sunflow large 20
xalan large 20

Table 5. Input size and number of warmup iterations of the considered DaCapo benchmarks.

to well known issues [111, 112], and batik since it employs non-standard classes from a package
(com.sun.image.codec.jpeg) that is not available in OpenJDK, on which our evaluation VM is
based [42]. Following the recommendation of the DaCapo developers [22], we consider benchmark
lusearch-fix in place of lusearch.

We evaluate our technique on four different event type categories (i.e., we profile four different
subsets of event types separately) listed in Table 2: all, arithmetics, branches, and arraycopies.
Category all contains all the event types that our technique supports and allows evaluating the
performance of our approach when simultaneously profiling many event types that occur frequently
in the application code (≈ 2.35 · 106 occurrences/ms on average). Profiling arithmetics, branches, and
arraycopies separately allows evaluating our approach when profiling a few or just one event type
in isolation. In particular, arithmetics and branches represent event types that occur frequently at
runtime, on average ≈ 6.76 · 105 occurrences/ms and ≈ 5.11 · 105 occurrences/ms, respectively. The
former is composed of 6 event types, while the latter contains only 2 event types. Both categories
highly benefits from path-based optimizations when profiled. On the other hand, arraycopies
represents a single infrequent event type (on average ≈ 8.42 · 102 occurrences/ms) whose profiling
hardly benefits the complex path-based optimizations.
We compare three different versions of our event profiler. The first version implements the

direct event counting strategy (Section 4.2.1), the second version implements the path-decoding
strategy (Section 4.2.2), while the third one implements the path-counting strategy (Section 4.2.3).
For brevity, in the following text, we abbreviate the three versions with the terms dec (direct event
counting), pd (path decoding), and pc (path counting). We note that all strategies perform the
instrumentation at the target position in the compilation pipeline, and insert markers in the IR.
The pd and pc strategies use the path-cutting modification (Section 4.3). We remark that the pd and
pc implementations are the ones proposed in this article, while dec serves as a comparison to show
the benefits of the other two approaches.
For each event-type category, profiler version, and benchmark, we report the arithmetic mean

obtained on 10 steady-state iterations, except for the compilation-time overhead (Section 6.3) and
code size overhead (Section 6.4) where the arithmetic mean instead includes the compilation time
and code size across all iterations, respectively. The reason is that the analyzed benchmarks were
designed to avoid the generation of new code at runtime [94], so once steady state is reached, no
more compilations occur. That is, compilation time is always zero and code size does not vary in
the steady state of the evaluated benchmarks.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:32 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

We note that we do not present an experimental comparative evaluation with prior work since,
to the best of our knowledge, there is no publicly available related technique that is suitable for
comparison. Related techniques (detailed later in Section 8) either lack open source implementations,
focus on different goals/event types or target different platforms (e.g., Jikes RVM [3]). Moreover,
bytecode-level instrumentation approaches are not suitable for comparison since they collect
significantly inaccurate event counts, as related work [125] shows, and both bytecode-level and
machine-code-level instrumentation cannot collect compiler-internal event types.

The approach that is the closest to our technique is the one proposed by Zheng et al. [124, 125],
which has a scope similar to ours and has also been implemented in a production Graal compiler.
Unfortunately, a working implementation of their approach is currently not available, as it was
removed from the Graal compiler many years ago. To compare the proposed approaches with
their technique, one would need to significantly modify their technique/implementation such that
their approach can be implemented in the latest version of Graal, which has undergone major
modifications in the last years. The implemented version of their technique would necessarily differ
significantly w.r.t. the one described in their paper, decreasing the effectiveness of a comparison
between their work and our approach. Finally, their technique can collect only a subset of the event
types that we collect and does not employ path-profiling—their approach would instrument the
program by inserting the instrumentation code before/after each event occurrence. This is similar
to the behavior of the evaluated naive strategy dec, thus used for comparison against the proposed
approaches.

6.2 Execution-time Overhead
Here, we evaluate the execution-time overhead introduced by our profiling technique. For each
combination of an implementation and a benchmark, Fig. 20 reports the overhead factor computed
as 𝑇instrumented/𝑇uninstrumented , where 𝑇instrumented refers to the execution time of an instrumented run
(using a given implementation) and𝑇uninstrumented refers to the execution time of an uninstrumented
run. Each of the four plots of Fig. 20 refers to a different event-type category (whose name is
reported below the x-axis), in order: all, arithmetics, branches, and arraycopies. Benchmarks are
reported on the 𝑥-axis of the plot, in alphabetical order, Renaissance benchmarks first (until scrabble)
and DaCapo benchmarks later. The execution-time overhead is reported on the logarithmic 𝑦-axis.
Above each bar, we report the exact value of the overhead. The black error bars represent the 95%
confidence interval (CI) of the measurements.
First, we analyze the evaluation results when profiling all metrics. In terms of overhead factor,

the pc implementation performs better than dec and pd in all benchmarks. Path-counter updates
performed by 𝑝𝑐 are less frequent than the event-counter updates of the 𝑝𝑑 and 𝑑𝑒𝑐 strategies,
and hence lead to lower overhead. The overhead of 𝑝𝑐 ranges from 1× (akka-uct and scala-stm-
bench7 [48]) to 1.59× (finagle-http [2]), with a geomean of 1.18×.14 The 𝑝𝑑 strategy shows that online
path decoding and bulk event-counter updates help in reducing the cost of single event-counter
updates in every benchmark except dotty, finagle-http, fop, and pmd. In these benchmarks, different
inlining decisions—taken by the JIT compiler and guided by different JVM-internal profiles—lead
to higher execution time. We clarify this phenomenon in Section 7.3. Overhead factors of 𝑝𝑑 range
from 1.04× (akka-uct) to 3.86× (fop), while overhead factors of 𝑑𝑒𝑐 range from 1.35× (future-genetic)
to 12.08× (als). On average, 𝑝𝑑 and 𝑑𝑒𝑐 slow application execution down by 2.11× and 3.55×,
respectively.

We discuss now the execution-time overhead of the other three evaluated categories. For almost
every evaluated benchmark and implementation (for the exceptions, we refer to the phenomenon

14Average overhead factors across multiple benchmarks are computed using the geometric mean.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:33

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

all

1

10

Ex
ec

ut
io

n-
tim

e
ov

er
he

ad
 fa

ct
or

 1
.4

4

 1
2.

08

 3
.6

1 5
.6

1

 4
.5

6

 2
.7

0

 2
.1

3

 2
.3

9

 5
.1

3

 1
.3

5

 7
.0

6

 4
.2

4

 4
.0

3

 4
.0

0

 1
0.

22

 3
.9

8

 2
.7

1 3
.4

0

 8
.1

4

 2
.5

3

 3
.8

0

 2
.5

7

 6
.3

6

 2
.0

5

 3
.3

7

 1
.8

6

 3
.5

3

 2
.4

0

 2
.4

3

 3
.5

5

 4
.2

7

 3
.1

1

 2
.1

3

 5
.5

6

 3
.3

7

 1
.0

4

 2
.8

8

 2
.0

0

 2
.0

0

 2
.2

0 3
.1

3

 2
.0

4 2
.8

7

 2
.2

4

 1
.1

2

 2
.4

5

 1
.7

3 2
.0

2

 2
.1

2

 2
.2

2

 2
.2

4

 1
.6

2

 1
.8

3

 3
.3

1

 1
.9

0

 3
.0

0

 1
.9

7

 2
.4

1

 1
.3

0

 2
.3

2

 1
.4

0

 3
.1

3

 3
.8

6

 1
.6

8 2
.1

4

 2
.1

4

 2
.0

7 2
.3

5

 1
.8

3

 2
.1

0

 1
.0

0 1
.4

2

 1
.0

5 1
.2

8

 1
.2

4

 1
.2

7

 1
.1

7 1
.5

9

 1
.2

1

 1
.0

3

 1
.1

7

 1
.1

8

 1
.2

2

 1
.0

8 1
.3

3

 1
.2

5

 1
.1

4

 1
.0

8

 1
.1

4

 1
.1

8 1
.5

0

 1
.0

6

 1
.2

0

 1
.0

0

 1
.0

8

 1
.0

9

 1
.0

1

 1
.1

6

 1
.1

8 1
.2

6

 1
.1

9

 1
.2

5

 1
.1

9

 1
.0

9

 1
.2

9

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arithmetics

1

10

Ex
ec

ut
io

n-
tim

e
ov

er
he

ad
 fa

ct
or

 1
.1

1

 5
.2

5

 2
.3

0 3
.5

8

 2
.9

6

 1
.5

1

 1
.3

2

 1
.1

6

 4
.6

7

 1
.0

9

 4
.2

0

 4
.0

4

 3
.1

1

 2
.4

4

 9
.2

1

 2
.6

7

 1
.7

1

 2
.8

0

 2
.8

4

 1
.3

5

 1
.4

2

 1
.4

2

 5
.6

9

 1
.3

5

 1
.4

5

 1
.2

1

 2
.2

9

 1
.3

6

 1
.3

5 1
.7

2

 2
.9

9

 1
.8

7

 1
.2

3

 3
.6

8

 1
.5

5

 1
.0

0 1
.4

1

 1
.1

4

 1
.2

0

 1
.2

2

 1
.1

3

 1
.1

6

 1
.3

1

 1
.3

7

 1
.0

3 1
.3

9

 1
.1

6

 1
.3

1

 1
.0

9 1
.4

3

 1
.1

4

 1
.1

1

 1
.1

9

 1
.3

2

 1
.1

3

 1
.2

9

 1
.0

6

 1
.3

1

 1
.0

0

 1
.0

0

 1
.0

6

 1
.6

1

 1
.5

5

 1
.1

0 1
.2

8

 1
.2

3

 1
.2

3

 1
.1

1

 1
.1

3

 1
.2

0

 1
.0

0 1
.1

8

 1
.0

8

 1
.1

7

 1
.2

1

 1
.1

2

 1
.1

5

 1
.2

7

 1
.1

8

 1
.0

2 1
.2

0

 1
.1

1

 1
.1

8

 1
.0

5 1
.3

4

 1
.1

5

 1
.1

0

 1
.0

8 1
.3

5

 1
.1

3

 1
.2

5

 1
.0

0

 1
.1

2

 1
.0

0

 1
.0

0

 1
.0

4

 1
.4

6

 1
.3

5

 1
.1

5 1
.4

0

 1
.1

3

 1
.2

0

 1
.0

9

 1
.0

6

 1
.1

9

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

branches

1

10

Ex
ec

ut
io

n-
tim

e
ov

er
he

ad
 fa

ct
or

 1
.2

5

 2
.5

2

 2
.5

2

 2
.4

4

 2
.3

6

 1
.4

0

 1
.3

8

 1
.2

4

 2
.7

0

 1
.2

2

 2
.1

4

 1
.9

0 2
.3

8

 1
.4

6 1
.9

2

 2
.0

0

 1
.6

1 2
.1

3 2
.8

4

 1
.5

2 1
.8

7 2
.0

7 3
.1

2

 1
.3

6

 2
.1

9

 1
.2

8 1
.7

2

 1
.2

5

 1
.6

0

 2
.3

5

 2
.0

4

 1
.8

9

 1
.2

5 1
.5

5

 1
.5

8

 1
.0

6 1
.5

5

 1
.2

3

 1
.4

3

 1
.3

4

 1
.2

6

 1
.2

0 1
.4

4

 1
.4

9

 1
.0

7 1
.4

5

 1
.2

6 1
.5

4

 1
.1

8

 1
.6

5

 1
.3

1

 1
.1

9 1
.4

2

 1
.5

1

 1
.2

3 1
.5

1

 1
.1

6 1
.7

9

 1
.0

1 1
.2

2

 1
.0

9

 1
.8

3

 1
.9

0

 1
.2

0 1
.3

8

 1
.2

3

 1
.3

7

 1
.2

0

 1
.1

3

 1
.2

7

 1
.0

3 1
.2

2

 1
.1

2

 1
.2

3

 1
.2

5

 1
.2

5

 1
.2

4 1
.3

8

 1
.1

8

 1
.0

2 1
.2

5

 1
.1

3

 1
.2

6

 1
.0

9 1
.3

4

 1
.3

4

 1
.1

1

 1
.2

5

 1
.3

0

 1
.2

2

 1
.8

2

 1
.1

7

 1
.2

0

 1
.0

4 1
.4

0

 1
.0

8

 1
.0

3 1
.4

9

 1
.1

7 1
.2

8

 1
.2

2

 1
.2

7

 1
.1

5

 1
.0

8 1
.2

7

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arraycopies

1

10

Ex
ec

ut
io

n-
tim

e
ov

er
he

ad
 fa

ct
or

 1
.0

3

 1
.0

0

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

2

 1
.0

1

 1
.0

2

 1
.0

1

 1
.0

0

 1
.0

2

 1
.0

4

 1
.0

0

 1
.0

1

 1
.0

0

 1
.0

4

 1
.0

2

 1
.0

0

 1
.0

4

 1
.0

4

 1
.0

2

 1
.0

0

 1
.0

2

 1
.0

2

 1
.0

0

 1
.2

4

 1
.0

0

 1
.0

4 1
.1

9

 1
.0

2

 1
.0

4

 1
.0

2

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

1

 1
.0

5

 1
.0

4

 1
.0

0

 1
.0

0

 1
.0

1

 1
.0

0

 1
.0

3

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

5

 1
.0

0

 1
.1

3

 1
.0

1

 1
.0

6

 1
.0

0

 1
.0

2

 1
.0

0

 1
.0

0

 1
.0

0 1
.1

7

 1
.0

5

 1
.0

0

 1
.0

0

 1
.0

1

 1
.0

3

 1
.0

4

 1
.0

0

 1
.0

1

 1
.0

1

 1
.0

0

 1
.0

2

 1
.0

0

 1
.0

0

 1
.0

3

 1
.0

3

 1
.0

5

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

3

 1
.0

1

 1
.0

1

 1
.0

1

 1
.0

0

 1
.0

4

 1
.0

5

 1
.0

9

 1
.0

1

 1
.0

6

 1
.0

0

 1
.0

5

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

0 1
.0

9

 1
.0

0 1
.1

6

 1
.0

2

 1
.0

2

 1
.0

0

 1
.0

0

 1
.0

0

dec
pd
pc

Fig. 20. Execution-time overhead factor of the dec, pd, and pc strategies.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:34 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

explained in the previous paragraph and later detailed in Section 7.3), the execution-time overhead
of all is higher than the one of the other three categories, because all contains (among many
others) the event types of the three other categories. Moreover, the execution-time overhead of
arithmetics is higher than the one of branches, which in turn is higher than the one of arraycopies.
This is expected, as in any dynamic profiling technique the execution-time overhead decreases
together with the frequency of the event occurrences. The low frequency of arraycopies leads to an
execution-time overhead close to 1 in all except a few benchmarks, such as philosophers, eclipse,
and jython.
The execution-time overhead of 𝑑𝑒𝑐 , 𝑝𝑑 , and 𝑝𝑐 is correlated to the number of executed event

occurrences, path-event combinations, and paths containing at least one event occurrence, re-
spectively. For this reason, the difference between the execution-time overhead factor of 𝑑𝑒𝑐 for
category all and the other three categories is relatively higher than the ones of 𝑝𝑑 and 𝑝𝑐 . This gap
narrows for 𝑝𝑑 and even more for 𝑝𝑐 . In the case of 𝑝𝑑 , the gap narrows due to the aggregation of
event occurrences in each path, while for 𝑝𝑐 , a narrow gap indicates that the number of executions
of paths containing at least one event occurrence does not significantly differ between all and
arithmetics, i.e., arithmetic operations occur in most of the program paths that contain at least one
event occurence.

Our results demonstrate the benefits of the proposed implementations (path decoding and path
counting) in terms of reducing the execution-time overhead in a counting profiler. This reduction
is enabled by path profiling with the path-cutting modification. In particular, by counting paths
online and by relying on offline decoding, the 𝑝𝑐 strategy enables efficient collection of both
large sets (e.g., category all) and small sets (e.g., categories arithmetics and branches) of frequent
event types, significantly outperforming 𝑑𝑒𝑐 . The other proposed implementation, 𝑝𝑑 , reduces
the runtime overhead compared to direct event counting, and is useful when real-time counters
must be gathered during the execution of the program. The naive 𝑑𝑒𝑐 strategy is comparable to 𝑝𝑐
and 𝑝𝑑 only for collecting a few event types that do no frequently occur in program code, such as
arraycopies. However, this is expected, any profiler has low overheads if profiling is infrequent.

6.3 Compilation-time Overhead
We now analyze the additional time needed by the JIT compiler to compile the code, and quan-
tify the overhead of the additional instrumentation phases in the proposed approach. For each
implementation, Fig. 21 reports on the logarithmic y-axis the compilation-time overhead factor,
that is, CT instrumented/CTuninstrumented , where CT instrumented refers to the compilation time of an in-
strumented run (using a given implementation) and CTuninstrumented refers to the compilation time
of an uninstrumented run.

When profiling all the supported metrics, in every benchmark (except future-genetic, which we
discuss later in this section), 𝑝𝑐 introduces less overhead than 𝑑𝑒𝑐 , which introduces less overhead
than 𝑝𝑑 . In particular, the 𝑑𝑒𝑐 implementation slows down compilation by a factor ranging from
1.51× (future-genetic) to 2.42× (jython), the 𝑝𝑑 implementation from 2.14× (chi-square [122]) to
6.46× (jython), and the 𝑝𝑐 implementation from 1.29× (page-rank [122]) to 1.69× (fj-kmeans [59]).
The average overhead factor is 2.01×, 3.06×, and 1.48× for 𝑑𝑒𝑐 , 𝑝𝑑 , and 𝑝𝑐 , respectively. The
increase in compilation time across all benchmarks is because all the three implementations require
additional compilation time to mark event occurrences, replace markers with IR, lower the IR,
and emit instrumentation machine code. We note that 𝑝𝑐 introduces the smallest overhead while
𝑝𝑑 slows compilation down the most. Even though 𝑝𝑐 performs path profiling, which requires
additional compilation time, the instrumentation code generated by 𝑝𝑐 is small (as discussed in the
next section), which reduces the IR lowering and machine code emission time w.r.t 𝑑𝑒𝑐 , leading to
lower compilation times—in 𝑝𝑐 , several event occurrences are replaced with a single path-counter

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:35

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

all

1

10

Co
m

pi
la

tio
n-

tim
e

ov
er

he
ad

 fa
ct

or

 1
.8

3

 1
.8

9

 1
.5

7 2
.0

3

 1
.8

0

 2
.0

9

 2
.1

1

 1
.8

3 2
.2

2

 1
.5

1

 1
.7

9

 1
.9

0

 1
.8

7 2
.2

5

 1
.8

3 2
.1

5

 1
.8

4

 1
.9

2 2
.2

7

 2
.0

5

 2
.2

6

 1
.8

5

 2
.0

4

 1
.9

3

 1
.9

7

 2
.0

2 2
.2

1

 2
.1

4

 2
.1

3

 2
.4

2

 2
.2

5

 2
.1

5

 2
.0

7

 2
.3

5

 2
.1

9

 3
.2

2

 2
.9

6

 2
.1

4 2
.9

8

 2
.5

5 3
.2

8

 3
.0

2

 2
.1

5

 3
.2

3

 2
.5

7

 2
.5

0

 2
.5

6

 3
.3

9

 3
.1

5

 2
.5

6

 2
.5

9 2
.9

1 3
.4

6

 3
.2

8

 3
.6

9

 3
.8

3

 2
.5

7

 2
.7

3 3
.3

6

 3
.2

9

 3
.3

8

 3
.2

5

 2
.3

1

 2
.9

8

 6
.4

6

 3
.4

3

 3
.0

2

 3
.2

2

 3
.3

6 4
.1

3

 1
.5

1

 1
.4

1

 1
.3

1

 1
.4

5

 1
.3

1

 1
.3

6

 1
.3

9

 1
.4

8 1
.6

9 1
.5

5

 1
.3

4

 1
.4

4

 1
.5

4

 1
.4

3

 1
.3

6

 1
.3

3

 1
.2

9 1
.6

0

 1
.5

3

 1
.5

7

 1
.6

3

 1
.3

8 1
.6

3

 1
.5

1

 1
.5

8

 1
.5

6

 1
.3

1

 1
.5

9

 1
.4

4

 1
.6

9

 1
.5

8

 1
.6

5

 1
.4

5

 1
.4

4 1
.6

8

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arithmetics

1

10

Co
m

pi
la

tio
n-

tim
e

ov
er

he
ad

 fa
ct

or

 1
.7

4

 1
.2

6

 1
.0

6

 1
.2

2

 1
.2

1

 1
.1

6

 1
.2

0

 1
.1

4 1
.2

8

 1
.1

1

 1
.1

8

 1
.2

4

 1
.6

6

 1
.2

9

 1
.2

3

 1
.2

7

 1
.1

7

 1
.2

2

 1
.3

3

 1
.1

6

 1
.3

0

 1
.1

9

 1
.1

8

 1
.1

9

 1
.2

1

 1
.1

4

 1
.1

0

 1
.2

7 1
.2

7

 1
.2

1

 1
.3

3

 1
.2

5

 1
.1

8 1
.5

0

 1
.2

5

 1
.1

8

 1
.2

1

 1
.1

2

 1
.2

5

 1
.1

9

 1
.1

8

 1
.2

2

 1
.2

2 1
.3

9

 2
.0

5

 1
.2

3

 1
.2

3 1
.4

0

 1
.3

4

 1
.2

3

 1
.2

0

 1
.1

8

 1
.3

1

 1
.2

5

 1
.2

0

 1
.3

4

 1
.1

9

 1
.2

4

 1
.2

7

 1
.2

8

 1
.3

1 1
.3

2

 1
.3

0

 1
.1

7

 1
.3

7

 1
.3

4

 1
.3

5

 1
.2

6

 1
.3

6

 1
.4

1

 1
.3

0

 1
.2

6

 1
.1

5

 1
.2

1

 1
.2

1

 1
.1

5

 1
.2

1

 1
.2

0

 1
.3

1

 1
.5

5

 1
.1

6

 1
.1

7

 1
.2

8

 1
.3

1

 1
.2

3

 1
.1

6

 1
.1

4

 1
.2

8

 1
.1

5

 1
.1

8

 1
.2

5

 1
.1

3

 1
.2

0

 1
.1

6

 1
.2

1

 1
.2

0

 1
.8

2

 1
.2

3

 1
.1

6

 1
.4

2

 1
.1

9

 1
.2

7

 1
.1

7

 1
.1

7

 1
.3

2

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

branches

1

10

Co
m

pi
la

tio
n-

tim
e

ov
er

he
ad

 fa
ct

or

 1
.1

9

 1
.1

5

 1
.3

7

 1
.2

2

 1
.1

7

 1
.1

9

 1
.1

9

 1
.1

6

 1
.1

3

 1
.0

0 1
.1

4

 1
.2

5

 1
.1

7

 1
.2

7

 1
.1

4

 1
.2

3

 1
.2

4

 1
.5

4

 1
.3

3

 1
.2

2

 1
.3

0

 1
.1

5

 1
.1

6

 1
.1

5

 1
.0

9

 1
.1

2

 1
.1

1

 1
.2

0 1
.2

8

 1
.7

8

 1
.2

4

 1
.1

9

 1
.2

1

 1
.1

8

 1
.2

3 1
.3

8

 1
.3

5

 1
.0

7 1
.3

7

 1
.2

7

 1
.3

7

 1
.2

7

 1
.3

1

 1
.4

2

 1
.8

7

 1
.3

2

 1
.3

2

 1
.8

9

 1
.5

4

 1
.4

3

 1
.3

0

 1
.2

7

 1
.4

6

 1
.3

7

 1
.3

6

 1
.5

0

 1
.3

0

 1
.3

6

 1
.3

6 1
.5

1

 1
.2

3

 1
.6

2

 1
.4

2

 1
.3

2 1
.6

3

 1
.4

9

 1
.4

6

 1
.3

7

 1
.3

5 1
.5

9

 1
.2

6

 1
.2

9

 1
.0

2

 1
.2

6

 1
.2

1

 1
.2

3

 1
.2

4

 1
.2

4

 1
.3

5

 1
.0

0 1
.2

7

 1
.2

4

 1
.3

3

 1
.3

7

 1
.2

5

 1
.2

1

 1
.1

7

 1
.3

4

 1
.1

6

 1
.2

8

 1
.4

0

 1
.2

1

 1
.2

0

 1
.2

6

 1
.3

0

 1
.1

8 1
.2

2

 1
.3

5

 1
.2

4 1
.4

9

 1
.2

6

 1
.3

0

 1
.3

2

 1
.2

2 1
.4

1

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arraycopies

1

10

Co
m

pi
la

tio
n-

tim
e

ov
er

he
ad

 fa
ct

or

 1
.0

3

 1
.0

1

 1
.0

0

 1
.0

1

 1
.0

0

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

5

 1
.3

4

 1
.0

1

 1
.0

2

 1
.0

5

 1
.0

0

 1
.0

2

 1
.0

1

 1
.0

0

 1
.0

2

 1
.0

4

 1
.0

0

 1
.0

7

 1
.0

0

 1
.0

4

 1
.0

0

 1
.0

3

 1
.0

0

 1
.2

0

 1
.0

0

 1
.0

0

 1
.2

7

 1
.0

1

 1
.0

3

 1
.0

4

 1
.0

1

 1
.0

3

 1
.0

9

 1
.0

3

 1
.0

0

 1
.0

5

 1
.0

0

 1
.0

4

 1
.0

6

 1
.0

2

 1
.0

7 1
.0

1

 1
.0

2

 1
.0

4

 1
.0

6

 1
.0

7

 1
.0

3

 1
.0

3

 1
.0

0

 1
.0

5

 1
.0

0

 1
.0

4

 1
.1

0

 1
.0

3

 1
.0

6

 1
.0

0

 1
.0

4

 1
.0

3 1
.1

7

 1
.0

3

 1
.0

0

 1
.0

0

 1
.0

6

 1
.0

4

 1
.0

5

 1
.0

3

 1
.0

5

 1
.0

5

 1
.0

0

 1
.0

0

 1
.0

4

 1
.0

4

 1
.0

4

 1
.0

5

 1
.0

4 1
.1

4

 1
.0

0

 1
.0

1

 1
.0

4

 1
.0

4

 1
.0

7

 1
.0

5

 1
.0

2 1
.1

6

 1
.2

4

 1
.0

2

 1
.0

0

 1
.0

9

 1
.0

0

 1
.0

8

 1
.0

1

 1
.0

6

 1
.0

2

 1
.0

0

 1
.0

3

 1
.0

0

 1
.1

8

 1
.0

5

 1
.0

6

 1
.0

6

 1
.0

1

 1
.0

5

dec
pd
pc

Fig. 21. Compilation-time overhead factor of the dec, pd, and pc strategies.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:36 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

update. This is not the case for 𝑝𝑑 , which inserts instrumentation code to perform path decoding and
event-count update for each path-event combination (as explained in Section 4.2.2). The generation
of such instrumentation code, combined with the time required to execute path profiling, makes the
compilation with 𝑝𝑑 slower than with 𝑑𝑒𝑐 . Nonetheless, a higher compilation time is less critical
than a high execution-time overhead, and does not make 𝑝𝑑 inapplicable to profile applications in
real-time (as we practically verified on the Renaissance and DaCapo suites).
We note that the 95% CIs associated with a few benchmarks (such as chi-square, future-genetic,

eclipse, h2, and jython) report high measurement variability regardless of the implementation
used. However, such variability is not a consequence of the 𝑑𝑒𝑐 , 𝑝𝑑 , and 𝑝𝑐 implementations,
since uninstrumented runs (i.e., the baseline) are also affected. We investigated the causes of this
behaviour, and determined that variability is caused by the non-determinism in the VM and compiler.
Indeed, the scheduling and interleaving of different threads could lead to different profiles—not
produced by our approach but produced by the VM and later used by Graal to make compilation
decisions—between different benchmark runs and therefore compilation of different methods
among different benchmark runs. The authors of the Renaissance benchmark suite are currently
investigating the sources of this high variability for benchmarks chi-square and future-genetic. We
note that the high variability of these benchmarks will also characterize evaluation results in the
subsequent sections.
We analyze now the evaluation results obtained on the other three categories. Similar to the

results on category all, for almost every evaluated benchmark and event type category, 𝑝𝑑 slows
down compilation the most. However, the difference with the other strategies is much smaller
than when profiling all metrics. This is because the small event-type sets of these categories lead
to a reduction in the number of path-event combinations. For the three evaluated categories and
in contrast to category all, 𝑑𝑒𝑐 introduces a compilation-time overhead that is comparable to the
compilation-time overhead of 𝑝𝑐 . This is because, as we will show in Section 6.4, the size of the
instrumentation code emitted by 𝑑𝑒𝑐 is comparable to the size of the instrumentation code emitted
by 𝑝𝑐 .
For the pc strategy, the sum of the overheads of the categories arithmetics, branches, and ar-

raycopies is higher than the overhead of the category all. The reason is that the overhead of pc
depends on the number of paths containing at least one occurrence of any event type and different
event types may share the same paths (in contrast, the overhead of dec depends on the occurrences
of the profiled event types, whereas the overhead of pd depends on the number of path-event
combinations). In practice, most of the program paths instrumented for the category all are also
instrumented for the categories arithmetics and branches, separately, i.e., arithmetics and branches
occur in most of the program paths. This explains why the sum of their overheads is higher than
the overhead of the category all The pc strategy is particularly suitable to count several event types
at the same time.

To summarize, the proposed 𝑝𝑐 approach allows efficiently profiling large sets of event types with
the lowest compilation-time overhead. The compilation-time overhead of 𝑑𝑒𝑐 becomes comparable
with the one of 𝑝𝑐 only when profiling small sets of infrequent event types. We remark that a high
compilation time is a minor drawback than a high execution-time overhead, which instead may
impair real-time profiling in production settings.

6.4 Code-size Overhead
In this section, we analyze the code-size overhead of our approach, i.e., we quantify the additional
memory space required to store the instrumentation code emitted by the JIT compiler implementing
the proposed approaches. For each implementation, Fig. 22 reports on the logarithmic y-axis the
code-size overhead factor, that is, CSinstrumented/CSuninstrumented , where CSinstrumented refers to the

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:37

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

all

1

2

3

4
5
6
7

Co
de

-s
ize

 o
ve

rh
ea

d
fa

ct
or

 2
.1

6

 2
.0

3

 2
.0

6 2
.3

9

 1
.9

3

 1
.9

4 2
.2

5

 2
.0

2

 2
.9

2

 1
.7

2

 2
.0

1

 2
.0

3 2
.2

9

 2
.3

2

 2
.0

3

 2
.2

5

 2
.0

3 2
.3

6 2
.8

8

 2
.2

5 2
.7

0

 2
.3

4 2
.8

4

 2
.3

1 2
.5

3

 2
.5

9

 2
.2

9

 2
.3

9

 2
.2

7

 2
.1

4 2
.6

3

 2
.6

6

 2
.1

6

 2
.8

9

 2
.3

6 2
.5

4

 2
.1

3

 2
.1

6 2
.4

3

 2
.0

3

 2
.2

4

 2
.3

2

 1
.8

7

 3
.3

7

 2
.0

1

 2
.1

4

 2
.0

9

 3
.0

4

 2
.1

7

 2
.1

1

 2
.0

9

 1
.9

6

 3
.0

4

 2
.8

3

 2
.6

4

 3
.3

0

 2
.5

6 3
.2

4

 2
.6

2 3
.2

4

 2
.8

4

 2
.1

1

 1
.7

1

 2
.0

2

 1
.9

2

 2
.6

6

 2
.9

8

 2
.4

3

 2
.2

8 2
.7

7

 1
.4

9

 1
.3

5 1
.5

5

 1
.4

6

 1
.3

1

 1
.3

6

 1
.4

0

 1
.4

7 1
.8

0

 1
.4

3

 1
.3

5

 1
.4

1 1
.5

9

 1
.4

2

 1
.3

6

 1
.3

8

 1
.3

0 1
.6

5

 1
.5

3

 1
.5

2

 1
.6

5

 1
.4

7 1
.7

9

 1
.5

0 1
.6

1

 1
.6

3

 1
.4

0

 1
.5

5

 1
.4

5

 1
.3

3 1
.5

7 1
.7

8

 1
.4

4

 1
.4

4

 1
.5

7

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arithmetics

1

2

3

4
5
6
7

Co
de

-s
ize

 o
ve

rh
ea

d
fa

ct
or

 1
.7

8

 1
.2

7

 1
.2

6

 1
.2

6

 1
.2

6

 1
.1

7

 1
.1

9

 1
.1

7 1
.3

7

 1
.1

4

 1
.2

2

 1
.2

4

 1
.6

6

 1
.3

2

 1
.2

5

 1
.2

9

 1
.2

0

 1
.2

8 1
.4

3

 1
.1

7 1
.3

7

 1
.2

5

 1
.3

0

 1
.2

4

 1
.2

8

 1
.2

2

 1
.3

3

 1
.3

1

 1
.2

3

 1
.1

2 1
.3

9

 1
.3

6

 1
.1

9

 1
.6

8

 1
.2

5

 1
.1

8

 1
.1

8

 1
.2

2

 1
.2

5

 1
.1

9

 1
.1

8

 1
.2

2

 1
.2

0 1
.4

5

 1
.9

6

 1
.2

3

 1
.2

1 1
.4

1

 1
.3

3

 1
.2

3

 1
.1

8

 1
.1

9

 1
.3

2

 1
.2

5

 1
.1

9

 1
.3

3

 1
.2

5

 1
.3

0

 1
.2

6

 1
.3

3

 1
.3

5

 1
.2

4

 1
.2

6

 1
.1

5

 1
.1

7

 1
.3

5

 1
.4

2

 1
.2

3

 1
.3

1

 1
.3

3 1
.3

6

 1
.2

6

 1
.2

4

 1
.2

8

 1
.2

9

 1
.1

9 1
.2

6

 1
.2

4 1
.4

1

 1
.6

0

 1
.2

3

 1
.2

1 1
.3

6

 1
.3

9

 1
.2

8

 1
.2

2

 1
.2

3

 1
.3

9

 1
.2

2

 1
.2

2

 1
.3

1

 1
.2

3

 1
.3

0

 1
.2

2

 1
.2

9

 1
.2

9

 1
.2

9

 1
.2

7 1
.2

2

 1
.3

0

 1
.2

7

 1
.3

9

 1
.2

3

 1
.2

4

 1
.3

6

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

branches

1

2

3

4
5
6
7

Co
de

-s
ize

 o
ve

rh
ea

d
fa

ct
or

 1
.2

8

 1
.2

1

 1
.4

6

 1
.3

0

 1
.2

1

 1
.2

4

 1
.2

6

 1
.2

3

 1
.2

4

 1
.0

0 1
.2

2

 1
.2

6

 1
.2

7

 1
.3

5

 1
.2

0

 1
.3

0

 1
.2

8

 1
.6

7

 1
.4

6

 1
.2

8 1
.4

4

 1
.2

6

 1
.3

0

 1
.2

2

 1
.2

3

 1
.2

6

 1
.2

9

 1
.2

7 1
.2

8 1
.5

4

 1
.3

3

 1
.3

4

 1
.2

5

 1
.2

2

 1
.2

8

 1
.3

5

 1
.2

8

 1
.2

5

 1
.3

6

 1
.2

4

 1
.3

1

 1
.2

3

 1
.2

7 1
.4

9

 1
.7

9

 1
.3

1

 1
.2

9

 1
.9

0

 1
.4

7

 1
.3

9

 1
.2

7

 1
.2

3 1
.4

8

 1
.4

0

 1
.3

1

 1
.4

9

 1
.3

7

 1
.4

8

 1
.3

3

 1
.6

1

 1
.3

1

 1
.3

8

 1
.3

6

 1
.2

8

 1
.2

8 1
.4

3

 1
.5

6

 1
.3

2

 1
.3

6

 1
.4

7

 1
.3

8

 1
.4

0

 1
.3

3

 1
.3

8

 1
.3

4

 1
.3

5

 1
.3

7

 1
.3

5 1
.5

3

 1
.0

6

 1
.3

9

 1
.3

6 1
.5

2

 1
.4

8

 1
.3

6

 1
.3

4

 1
.2

9 1
.5

2

 1
.2

6 1
.3

8 1
.5

7

 1
.3

9

 1
.3

9

 1
.3

7 1
.4

5

 1
.3

4

 1
.3

8

 1
.4

6

 1
.3

4

 1
.3

3

 1
.3

7

 1
.5

2

 1
.4

3

 1
.3

4

 1
.4

8

dec
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arraycopies

1

2

3

4
5
6
7

Co
de

-s
ize

 o
ve

rh
ea

d
fa

ct
or

 1
.0

1

 1
.0

1

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

3

 1
.2

8

 1
.0

1

 1
.0

1

 1
.0

1

 1
.0

0

 1
.0

3

 1
.0

0

 1
.0

0

 1
.0

0 1
.0

3

 1
.0

0

 1
.0

5

 1
.0

0

 1
.0

4

 1
.0

0 1
.0

2

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0 1
.1

5

 1
.0

1

 1
.0

5

 1
.0

2

 1
.0

2

 1
.0

3

 1
.0

7

 1
.0

0

 1
.0

1

 1
.0

3

 1
.0

0

 1
.0

3

 1
.0

1

 1
.0

0 1
.0

4

 1
.0

0

 1
.0

1

 1
.0

1

 1
.0

2

 1
.0

6

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

2

 1
.0

0

 1
.0

3

 1
.0

7

 1
.0

3

 1
.0

4

 1
.0

0

 1
.0

2

 1
.0

2

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

4

 1
.0

4

 1
.0

2

 1
.0

1

 1
.0

3

 1
.0

1

 1
.0

0

 1
.0

1

 1
.0

2

 1
.0

0

 1
.0

1

 1
.0

1

 1
.0

1 1
.1

3

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

4

 1
.0

2

 1
.0

0 1
.0

4 1
.2

0

 1
.0

0

 1
.0

0

 1
.0

5

 1
.0

0 1
.0

6

 1
.0

0 1
.0

3

 1
.0

1

 1
.0

0

 1
.0

0

 1
.0

0 1
.0

8

 1
.0

4

 1
.0

5

 1
.0

1

 1
.0

0

 1
.0

2

dec
pd
pc

Fig. 22. Code-size overhead factor of the dec, pd, and pc strategies.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:38 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

code size of an instrumented run (using a given implementation) and CSuninstrumented refers to the
code size of an uninstrumented run.

As done in the previous sections, we first discuss the evaluation results obtained when profiling
all metrics. Our results confirm the explanation reported in Section 6.3—the instrumentation code
generated by 𝑝𝑐 to update path-counters is small w.r.t. the instrumentation code generated by 𝑑𝑒𝑐
and 𝑝𝑑 when profiling several event types simultaneously. Moreover, the instrumentation code
generated by 𝑝𝑑 is smaller than the one generated by 𝑑𝑒𝑐 for most of the evaluated benchmarks.
Evaluation results confirm also that the emission of the additional instrumentation code (i.e., the
code that corresponds to the additional code size) greatly influences compilation time. Without
considering jython, we find that there is a strong positive correlation between code-size and
compilation-time overheads, as remarked by the Pearson correlation coefficient [35] which is equal
to 0.72, 0.62, and 0.85 for 𝑑𝑒𝑐 , 𝑝𝑑 , and 𝑝𝑐 , respectively. Considering jython, the Pearson correlation
coefficient decreases to 0.64, 0.73, and 0.22 for 𝑑𝑒𝑐 , 𝑝𝑐 , and 𝑝𝑑 , respectively. Analyzing jython, we
discovered that Graal spends much more time in emitting code (and in particular in allocating
registers) w.r.t. to the other benchmarks. When jython is instrumented using the 𝑝𝑑 strategy, even
if 𝑝𝑑 emits less code than 𝑑𝑒𝑐 , this phenomenon is particularly evident. We are in contact with the
Graal team that is investigating the compilation-time issue in the backend compiler for the jython
benchmark. The 𝑑𝑒𝑐 implementation introduces a code-size overhead factor ranging from 1.71×
(future-genetic) to 2.92× (fj-kmeans), while the code-size overhead of 𝑝𝑑 ranges from 1.71× (fop)
to 3.37× (fj-kmeans), and the one of 𝑝𝑐 from 1.30× (page-rank) to 1.80× (fj-kmeans). The average
overhead factor is 2.29×, 2.41×, and 1.49× for 𝑑𝑒𝑐 , 𝑝𝑑 , and 𝑝𝑐 , respectively, which is compatible to
the average compilation-time overhead, as shown in the previous section. In comparison to 𝑑𝑒𝑐
and 𝑝𝑑 , the code-size overhead of 𝑝𝑐 is significantly lower when profiling all event types.
Now, we discuss the evaluation results of categories arithmetics, branches, and arraycopies. As

the figure shows, the code size of 𝑑𝑒𝑐 considerably decreases together with the number of event
occurrences, while the one of 𝑝𝑑 considerably decreases together with the number of instrumented
event types. Since the code-size overhead of 𝑝𝑐 was already low for category all, its code-size
overhead for categories arithmetics and branches decreases only slightly together with the number
of paths. As detailed in Section 6.3 for the compilation-time overhead factor, we remark that most
of the program paths instrumented for category all are also instrumented for category arithmetics
and branches, separately. Hence, the code-size overhead of category all is lower than the sum of the
code-size overheads of categories arithmetics and branches for pc. The code-size overhead of 𝑑𝑒𝑐 is
comparable to the code-size overhead of 𝑝𝑐 and 𝑝𝑑 for categories arithmetics and arraycopies while
it is slightly lower for branches. The reason is that category branches represents an unfavorable
scenario for path-based approaches implementing path-cutting, in terms of code-size overhead.
Consider for example the 𝑑𝑒𝑐 and 𝑝𝑐 strategies, the program paths in Fig. 19c, and a branch event
occurrence in basic block 1 of Fig. 19c that represents a jump to either basic block 2, 3, 4, or 5. In 𝑑𝑒𝑐 ,
the event occurrence leads to the generation of exactly one event-counter update in basic block 1.
In 𝑝𝑐 , the event occurrence leads to the generation of four path-counter updates (one for each basic
block 2, 3, 4 and 5). As a consequence, the code-size overhead of 𝑝𝑐 is higher than the one of 𝑑𝑒𝑐 .

We note that, even if the code-size overhead of the evaluated strategies is similar, the instrumen-
tation code emitted by 𝑑𝑒𝑐 is significantly different from the one emitted by the other strategies.
The instrumentation code of 𝑑𝑒𝑐 is inserted in correspondence to the event occurrences, while
the instrumentation code generated by 𝑝𝑑 and 𝑝𝑐 is inserted at the end of program paths. For
this reason, when profiling a few event types (depending on how frequently they occur), path
tracking and counter updates may lead to the emission of more machine code w.r.t. 𝑑𝑒𝑐 . Path-based
strategies may insert instrumentation code at the end of many program paths that are rarely or
never executed, e.g., program paths that end with exception throwing or deoptimizations. The

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:39

difference in the execution-time overhead (Section 6.2) and the code-size overhead is motivated by
the fact that a program instrumented using 𝑑𝑒𝑐 performs many event-counter updates (and hence
executes most of the emitted instrumentation code) while the same program instrumented using
𝑝𝑐 performs fewer path-counter updates (and hence executes only a minor sub-part of the emitted
instrumentation code). We discuss other details of the update frequency of path-based strategies
that employ path-cutting in Section 7.3.
To summarize, our evaluation results show that the code-size overhead correlates with the

compilation-time overhead (Section 6.3). Hence, similarly to the compilation-time overhead, the
proposed 𝑝𝑐 approach allows efficiently profiling large sets of event types with the lowest code-size
overhead. When collecting a few event types (such as arithmetics and arraycopies), the code-size
overhead of 𝑝𝑐 and 𝑝𝑑 is comparable to the one of 𝑑𝑒𝑐 . When profiling category branches, that
represents a particularly unfavorable scenario for path-based approaches implementing path-
cutting, the code-size overhead of 𝑑𝑒𝑐 is only slightly lower than the one of 𝑝𝑐 and 𝑝𝑑 .

6.5 Memory Consumption
Here, we evaluate the memory consumption of the three strategies, i.e., the memory required to
store the data structures referenced by the instrumentation code to implement the techniques
as described in Section 4. As discussed in Section 4.2, an implementation based on direct event
counting (dec) results in a memory consumption of 𝑂 (|𝐸 |), while an implementation based on
path-decoding (pd) or path-counting (pc) in𝑂 (|𝐸 | · |𝑃𝐸 |). We implemented both 𝑃𝐸 and 𝐸 as long
arrays.

The dec strategy only requires an array of length |𝐸 | (to store the event count), while pd and pc
require the allocation of two long arrays of different length. Following the terminology introduced
in Section 4.2.2, pd allocates two arrays 𝑐𝑛𝑡 and 𝑝𝑒𝑐 of length |𝑐𝑛𝑡 | = |E | and |𝑝𝑒𝑐 | = |PE | · |𝐸 |,
respectively. Given that each long value occupies 8 bytes:

memory_consumptionpd [B] = 8 · (|𝑐𝑛𝑡 | + |𝑝𝑒𝑐 |) (5)

Similarly to pd, pc allocates the 𝑝𝑒𝑐 array. However, the cnt array is replaced by a 𝑝𝑐 array of
length |𝑝𝑐 | = |PE | (introduced in Section 4.2.3). The memory consumption of the pc implementation
can be expressed in bytes as follows:

memory_consumptionpc [B] = 8 · (|𝑝𝑐 | + |𝑝𝑒𝑐 |) (6)

In Fig. 23, we report the additional memory consumption introduced by the instrumentation
expressed in megabytes (the y-axis is logarithmic). Since 𝐸 is fixed (for a given category) and
hence the length of the array that stores counters is not influenced by the workload, 𝑑𝑒𝑐 allocates
the same amount of memory for every benchmark (344, 48, 16, and 8 bytes for categories all,
arithmetics, branches, and arraycopies, respectively). Such a memory consumption is several orders
of magnitude lower than the memory required by the 𝑝𝑐 and 𝑝𝑑 implementations. Because the
memory consumption of 𝑑𝑒𝑐 is negligible, the figure reports only 𝑝𝑐 and 𝑝𝑑 .

We note that the additional memory consumption due to the instrumentation does not depend
on the original memory footprint. For instance, two programs with the same |𝐸 | and |PE | might
consume a different amount of memory when uninstrumented, even though the space required
by the instrumentation is the same. However, for comparison, Fig. 23 reports also the heap size
required by the uninstrumented benchmarks. To compute the heap size, we run each workload
with an initial heap size of 1 MB and we let the GC ergonomics of the JVM increase the heap size
until it stabilizes. We report the resulting heap size in the figure.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:40 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

all

100

102

104

106

108

M
em

or
y

[M
B]

 1
00

71
.8

3

 9
43

.1
7

 1
38

7.
83

 2
57

8.
17

 2
08

5.
00

 8
52

.1
7

 1
59

7.
67

 7
20

.3
3

 8
78

.0
0

 4
74

.3
3

 5
76

.6
7

 1
69

6.
33

 1
18

3.
17

 4
14

2.
83

 5
06

2.
17

 3
75

4.
83

 2
92

3.
83

 1
43

2.
67

 1
01

6.
67

 1
31

8.
00

 2
07

.3
3

 3
15

.8
3

 8
0.

33 7
00

.1
7

 1
18

0.
00

 1
04

.5
0 3

40
4.

83

 2
58

.3
3

 2
28

8.
00

 2
29

1.
00

 1
28

.3
3

 1
22

2.
00

 4
20

.8
3

 1
25

1.
83

 2
63

9.
33

 3
8.

75

 9
7.

03

 3
5.

92

 4
6.

72

 9
0.

51

 1
77

.7
4

 8
3.

62

 4
0.

21

 1
4.

45

 3
6.

29

 4
9.

84

 5
9.

59

 2
5.

73 1
56

.7
2

 4
7.

06

 8
4.

87

 7
9.

23

 2
6.

82

 1
1.

38 4
9.

96

 3
0.

59

 2
6.

36

 7
.8

7 3
0.

03

 1
5.

09

 2
2.

94 4
05

.2
1

 3
4.

47

 6
4.

54

 1
60

.6
6

 2
4.

90

 1
9.

96 7
9.

06

 2
3.

30

 5
8.

13

 3
9.

02

 1
04

.7
0

 4
3.

35

 4
7.

95

 9
8.

30

 1
85

.8
7

 8
7.

48

 5
6.

33

 1
2.

86 4
4.

06

 5
1.

68

 6
7.

24

 2
2.

76 1
78

.6
7

 4
7.

86

 9
6.

63

 9
0.

26

 2
4.

54

 1
0.

37 5
0.

80

 2
6.

69

 2
5.

50

 7
.1

7 2
9.

54

 1
2.

61

 2
3.

22 5
00

.4
4

 5
8.

51

 8
3.

16

 1
89

.6
3

 2
5.

11

 2
0.

08 8
3.

78

 2
6.

27

 5
8.

42

uninstrumented heap size
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arithmetics

100

102

104

106

108

M
em

or
y

[M
B]

 1
00

71
.8

3

 9
43

.1
7

 1
38

7.
83

 2
57

8.
17

 2
08

5.
00

 8
52

.1
7

 1
59

7.
67

 7
20

.3
3

 8
78

.0
0

 4
74

.3
3

 5
76

.6
7

 1
69

6.
33

 1
18

3.
17

 4
14

2.
83

 5
06

2.
17

 3
75

4.
83

 2
92

3.
83

 1
43

2.
67

 1
01

6.
67

 1
31

8.
00

 2
07

.3
3

 3
15

.8
3

 8
0.

33 7
00

.1
7

 1
18

0.
00

 1
04

.5
0 3

40
4.

83

 2
58

.3
3

 2
28

8.
00

 2
29

1.
00

 1
28

.3
3

 1
22

2.
00

 4
20

.8
3

 1
25

1.
83

 2
63

9.
33

 3
.4

0

 1
0.

00

 3
.6

4

 4
.4

9

 9
.4

8

 1
7.

97

 8
.3

9

 5
.2

3

 1
.1

3 6
.5

7

 5
.1

2

 6
.4

1

 2
.2

8 1
7.

54

 4
.6

0

 9
.2

9

 9
.0

9

 2
.1

8

 0
.8

8 4
.4

0

 2
.4

3

 2
.4

3

 0
.5

4 2
.7

2

 1
.1

5

 2
.1

0 4
7.

80

 5
.2

1

 7
.5

6

 1
8.

23

 2
.3

1

 1
.7

5 7
.9

4

 2
.3

0

 5
.4

1

 4
.5

1

 1
2.

25

 4
.2

2

 5
.2

0

 1
1.

01

 2
1.

00

 9
.9

4

 6
.1

6

 1
.2

6 6
.0

7

 5
.9

0

 7
.3

4

 2
.4

4 2
0.

67

 5
.3

7

 1
0.

86

 1
0.

64

 2
.5

8

 0
.9

9 5
.1

2

 2
.7

1

 2
.6

9

 0
.6

2 3
.0

0

 1
.2

7

 2
.2

8 5
6.

74

 5
.9

9

 9
.1

6

 2
3.

27

 2
.4

6

 1
.9

3 9
.1

2

 2
.6

5

 6
.1

9

uninstrumented heap size
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

branches

100

102

104

106

108

M
em

or
y

[M
B]

 1
00

71
.8

3

 9
43

.1
7

 1
38

7.
83

 2
57

8.
17

 2
08

5.
00

 8
52

.1
7

 1
59

7.
67

 7
20

.3
3

 8
78

.0
0

 4
74

.3
3

 5
76

.6
7

 1
69

6.
33

 1
18

3.
17

 4
14

2.
83

 5
06

2.
17

 3
75

4.
83

 2
92

3.
83

 1
43

2.
67

 1
01

6.
67

 1
31

8.
00

 2
07

.3
3

 3
15

.8
3

 8
0.

33 7
00

.1
7

 1
18

0.
00

 1
04

.5
0 3

40
4.

83

 2
58

.3
3

 2
28

8.
00

 2
29

1.
00

 1
28

.3
3

 1
22

2.
00

 4
20

.8
3

 1
25

1.
83

 2
63

9.
33

 1
.1

6

 3
.3

4

 1
.1

6

 1
.4

9

 3
.1

2

 5
.9

2

 2
.6

0

 1
.6

6

 0
.3

5 1
.8

3

 1
.7

0

 2
.0

6

 0
.9

4 5
.9

2

 1
.5

7

 2
.9

8

 2
.8

7

 0
.7

3

 0
.3

1 1
.4

7

 0
.8

1

 0
.8

0

 0
.1

9 0
.8

7

 0
.4

2

 0
.6

3 1
6.

40

 1
.6

8

 2
.4

6

 5
.9

0

 0
.7

7

 0
.5

9 2
.5

6

 0
.8

0

 1
.8

3

 1
.7

0

 4
.9

9

 1
.7

8

 2
.1

7

 4
.7

3

 8
.8

8

 4
.1

0

 2
.5

7

 0
.5

3

 1
.5

6

 2
.6

1

 3
.1

6

 1
.0

4 8
.7

1

 2
.2

3

 4
.5

3

 4
.2

8

 1
.0

8

 0
.3

9 2
.2

1

 1
.2

1

 1
.1

2

 0
.2

6 1
.3

0

 0
.5

4

 0
.9

4 2
3.

79

 2
.6

3

 3
.7

0

 9
.0

8

 1
.0

5

 0
.8

3 4
.0

3

 1
.1

5

 2
.6

5

uninstrumented heap size
pd
pc

akka
-uct als

chi-sq
uare

db-sh
ootout

dec-tr
ee

dotty

finagle-ch
irper

finagle-http

fj-k
means

future-genetic

gauss-m
ix

log-regressio
n

mnemonics

movie-lens

naive-bayes

neo4j-analytics

page-rank

par-m
nemonics

philosophers
reacto

rs

rx-scr
abble

sca
la-doku

sca
la-km

eans

sca
la-stm

-bench7
scr

abble
avrora

eclip
se fop h2

jython
luindex

lusearch
-fix pmd

sunflow
xalan

arraycopies

100

102

104

106

108

M
em

or
y

[M
B]

 1
00

71
.8

3

 9
43

.1
7

 1
38

7.
83

 2
57

8.
17

 2
08

5.
00

 8
52

.1
7

 1
59

7.
67

 7
20

.3
3

 8
78

.0
0

 4
74

.3
3

 5
76

.6
7

 1
69

6.
33

 1
18

3.
17

 4
14

2.
83

 5
06

2.
17

 3
75

4.
83

 2
92

3.
83

 1
43

2.
67

 1
01

6.
67

 1
31

8.
00

 2
07

.3
3

 3
15

.8
3

 8
0.

33 7
00

.1
7

 1
18

0.
00

 1
04

.5
0 3

40
4.

83

 2
58

.3
3

 2
28

8.
00

 2
29

1.
00

 1
28

.3
3

 1
22

2.
00

 4
20

.8
3

 1
25

1.
83

 2
63

9.
33

 0
.6

1

 1
.7

0

 0
.6

1

 0
.7

6

 1
.6

1

 3
.0

3

 1
.4

3

 0
.8

9

 0
.1

6 0
.6

5

 0
.8

5

 1
.0

7

 0
.3

3 2
.9

4

 0
.7

6

 1
.5

8

 1
.4

9

 0
.3

5

 0
.1

3 0
.7

5

 0
.4

0

 0
.4

0

 0
.0

9 0
.4

2

 0
.1

7

 0
.3

3 8
.2

9

 0
.8

6

 1
.2

3

 3
.0

6

 0
.3

7

 0
.2

5 1
.3

5

 0
.3

8

 0
.8

7

 1
.1

7

 3
.3

6

 1
.2

3

 1
.5

1

 3
.2

3

 5
.9

7

 2
.8

8

 1
.8

0

 0
.3

5

 0
.9

9

 1
.6

7

 2
.1

4

 0
.6

6 5
.9

7

 1
.5

0

 3
.1

4

 3
.2

2

 0
.8

4

 0
.2

6 1
.4

3

 0
.7

7

 0
.7

6

 0
.1

8 0
.8

5

 0
.3

5

 0
.6

4 1
6.

66

 1
.7

2

 2
.5

4

 7
.0

3

 0
.7

4

 0
.5

1 2
.6

8

 0
.7

6

 1
.7

3

uninstrumented heap size
pd
pc

Fig. 23. Memory consumption of the 𝑝𝑑 and 𝑝𝑐 strategies, compared with the heap size required by the
benchmarks.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:41

First, we evaluate the memory consumption of category all. In 𝑝𝑐 and 𝑝𝑑 , memory consumption
varies among benchmarks since |PE | depends on the control flow of the instrumented program.
Moreover, even for the same benchmark, |PE | (and hence memory consumption) may vary among
different executions due to non-deterministic decisions taken by the VM or by the compiler. In
the 𝑝𝑐 and 𝑝𝑑 implementations, most of the allocated memory is dedicated to the decoding table.
In the case of 𝑝𝑑 , the memory consumption ranges from 7.87 MB (scala-kmeans) to 405.21 MB
(eclipse), while in the case of 𝑝𝑐 , the memory consumption ranges from 7.17 MB (scala-kmeans) to
500.44 MB (eclipse). On average, 𝑝𝑑 and 𝑝𝑐 require 44.58 MB and 47.30 MB, respectively. The heap
size required by the benchmarks ranges from 80.33 MB (scala-kmeans) to 10071.83 MB (akka-uct),
and is 1056.12 MB on average. Both 𝑝𝑑 and 𝑝𝑐 require ≈ 4% of the heap size on average.
We note that, for the same benchmark, 𝑝𝑐 typically requires more memory than 𝑝𝑑 , since |𝑃𝐸 |

is always greater than |𝐸 | and hence |𝑝𝑐 | > |𝑐𝑛𝑡 | (see Formulas 5 and 6). For certain benchmarks,
such as fj-kmeans and rx-scrabble, 𝑝𝑑 allocates more memory than 𝑝𝑐 , meaning that the sets 𝑃𝐸
obtained by the two implementations are significantly different. Similarly to what we report in
Section 6.2 and later detail in Section 7.3, this difference in the sets 𝑃𝐸 is caused by the fact that
different profiles lead to different inlining decisions and speculative optimizations that alter the
control-flow of the compilation units.

Our evaluation results on the other three evaluated categories show how memory consumption
decreases together with the number of event types (i.e., |E |) and the number of paths that contain
at least one event (i.e., 𝑝𝑒𝑐). For this reason, the total memory consumption of the arithmetics,
branches, and arraycopies categories is much less than the memory consumption of category all.15
Moreover, similar to the other analyses reported in the section, the memory consumption decreases
for arithmetics, and even more for branches and arraycopies. For most of the benchmarks, even
when profiling all event types simultaneously, the memory required by the proposed approaches is
small w.r.t. the heap size.

7 DISCUSSION
In this section, we first discuss the assumptions of our technique (Section 7.1). Then, we discuss
additional potential usages of our approach (Section 7.2) and report its limitations (Section 7.3).

7.1 Assumptions
To be applicable, our technique requires a compilation pipeline where an event type of interest
can be identified in isolation and where one can clearly locate a phase after which an event
type cannot be detected anymore. We note that our technique is applicable to the HotSpot C2
compiler [19] and Graal. Moreover, to the best of our knowledge, it should be applicable also to
Turbofan (V8) [44, 45, 107], LLVM [65] and GCC [37], for the event types defined in this paper.
To use markers, a compiler should allow fixed no-op instructions, which have no side-effects and
whose code-size and cycle-count estimates are set to zero.

7.2 Potential Additional Usages
A compiler developer could use our methodology to define optimizable patterns as new event types
and perform exploratory analyses to quantify how frequently these patterns are executed. In this
way, it is possible to determine whether it is worthwhile to implement a certain compiler phase, or
whether its potential speedup is not sufficient because the pattern is rarely executed. For example,

15We remark that for categories arithmetics, branches, and arraycopies, |𝐸 | is equal to six, two, and one, respectively. For the
category all, |𝐸 | is equal to 43.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:42 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

to extend the partial escape analysis phase [110] so that it stack-allocates a certain new type of an
IR node, we can collect an event count that represents allocations of this node that did not escape.
Compiler developers can also employ our methodology to study how compiler phases affect

event types. For instance, it is possible to compare the same event types, collected before and after
a certain compiler phase, rather than before the phase that performs the lowering.

One important application area of the proposed profiler is to track performance regressions in an
optimizing compiler. Rather than tracking the running time of a benchmark to detect regressions,
compiler developers can track metric counts that reflect IR-internal instructions. Such metrics
serve as proxies for the program running time, and they can reflect the effectiveness of a particular
optimization more precisely.
Our methodology can be used by developers who want to characterize or investigate new

workloads and benchmarks that are specifically designed to stress specific kinds of compiler
optimizations. A good benchmark suite should have a large variety of benchmarks that exploit
different optimizations and show high diversity in terms of metrics. Our approach can help verifying
that the chosen workloads show the required diversity.

While the implementation of the intrumentation-code generation phase and the use cases shown
in the article largely focus on JIT compilation, our approach can also be applied to static compilation.
Concretely, our profiler can be easily ported to Native Image [119], a static ahead-of-time (AOT)
snapshotting tool based on the Graal Compiler. Doing so would allow studying the differences
between AOT and JIT compilation. For example, assuming to analyze the steady state (where almost
no interpretation occurs), our approach can be used to compare the effect of JIT-compilation-specific
speculative optimizations against AOT optimizations.

7.3 Limitations
Our approach allows one to collect event types that can be represented at the compiler-IR level. As
any other compiler-IR profiling technique, our approach cannot profile event occurrences related
to code that has not been compiled, or low-level hardware event types such as branch- or cache-
misses. For the typical use cases presented in this article, i.e., analyzing and debugging compiler
optimizations (Sections 5.3 and 5.4), this is a desirable property—a compiler developer exactly
wants to profile the JIT compiled code, excluding native and interpreted code. However, for other
use cases, this property may be a limitation. For example, our approach may provide insufficient
information to a performance analyst that needs a complete view of the whole program execution.
Our implementation is not able to collect event occurrences that take place in C/C++ code not

compiled by Graal, such as the internal implementation code of the JVM. To overcome this limitation,
we could recompile such native code with a C++ compiler that implements our profiling technique.
For example, as later mentioned in Section 8, LLVM provides an API to insert user-defined compiler
phases [64]. This API allows implementing our technique in LLVM. While the IR of LLVM and the
IR of Graal are different, one can identify, for each event type detected by our approach, the nodes
in the LLVM IR that represent the same event type. If the program includes calls to native code,
then the final count for an event type is the sum of the executions of all LLVM and Graal nodes
that represent such an event type.

Since our implementation is not able to profile event occurrences that take place outside of code
compiled by Graal, our approach cannot collect event occurrences that take place in interpreted
code. However, we conducted some experiments to confirm that in the steady-state iterations
of iterative workloads (i.e., programs that repeatedly perform the same computation, including
benchmark suites such as Renaissance), the execution time spent in the interpreter is very little.
Our results show that when executing a steady-state iteration of the Renaissance benchmarks, the
time spent by the JVM in interpreted code is on average 0.04% of the total execution time, ranging

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:43

from 0% to 0.46%. This indicates that the vast majority of the executed code is compiled and can
be profiled with our approach. In non-iterative workloads, our approach may not collect event
occurrences taking place in infrequently executed code. However, our approach could be still be
employed if the program is compiled ahead-of-time.

Even though markers allow increasing profiling accuracy, markers may still yield less accurate
profiles w.r.t. alternative designs, such as the event-type-set-annotations discussed in Section 3.3.2.
We consider investigating alternative designs as interesting future work.

Our methodology lowers the perturbation on compiler phases by inserting markers that will later
be converted to instrumentation code. Unfortunately, some level of perturbation is still present. For
example, the memory overhead (Section 6.5) introduced by our strategies may alter cache locality
and the instrumentation code can affect register allocation that occurs after the instrumentation-
code generation phase, increasing register pressure. We note that the impact on cache behavior and
register allocation does not directly affect the profiles collected using our strategies but influences
other runtimemetrics collected usingHardware Performance Counters (HPCs), such as cachemisses.
Moreover, since the instrumentation code is inserted at the end of the compilation pipeline, this
code is not optimized by optimization phases and may introduce unnecessary overhead. Generally,
our profiler may affect thread scheduling which in turn can affect locality. We are investigating
approaches to mitigate these issues.
In JIT compilers, even though our technique lowers perturbation on compiler phases within

a single compilation unit, other sources of perturbations are still present. For example, the addi-
tional compilation time required to instrument a certain method may delay the compilation of
other compilation units. During this delay, code associated to these other compilation units is
executed by the interpreter, which lets the VM collect additional profiles that later guide compiler
decisions. Since these profiles are different w.r.t. the profiles that the VM would collect in an
execution without instrumentation, the instrumentation perturbs compilation—the compiler may
take different optimization decisions that lead to different execution time and memory consumption.
Optimizations that leverage profiling data include method inlining and speculative optimizations.
Such a perturbation is the root cause of the higher execution-time overhead of path decoding
w.r.t. direct event counting and of the higher memory consumption of path decoding w.r.t path
counting related to some benchmarks, as reported in Sections 6.2 and 6.5, respectively. We are
investigating techniques to reduce such perturbations.
Finally, path cutting decreases the total path-count |𝑃𝐸 | and hence memory-consumption and

compilation time, making path profiling applicable to modern JIT compilers. However, path cutting
decreases also the average path-length 𝜋 , leading to more frequent updates that increase the
execution-time and code-size overhead associated to the instrumentation. Consider for example
the path counting strategy and the execution of basic blocks <1, 2, 6, 7, 11> shown in Fig. 19.
Without path cutting, instrumentation code (inserted at node 11) would increment only the counter
associated with path <1, 2, 6, 7, 11>. With path cutting, instrumentation code increments three
counters. In particular, instrumentation code inserted at nodes 2, 7, and 11 would increment the
counters associated with path <1, 2>, <6, 7>, and <11>, respectively. In Section 6, we show that on
widely used benchmarks, path cutting leads to a reasonable trade-off between memory consumption
and execution-time overhead.

8 RELATEDWORK
Zheng et al. [125] show how compiler optimizations influence event occurrences and, due to this
reason, source- and bytecode-level instrumentation cannot be used to accurately count event
occurrences that may be altered by different compiler phases, such as allocated objects or method
invocations. To mitigate this issue, they define an API and a technique to make the compiler aware

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:44 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

of the inserted instrumentation code, which can be moved or removed with the corresponding event
occurrence. As a result, a bytecode-level profiler that uses their API can avoid accounting event
occurrences that do not take place after compilation. Unfortunately, such a technique addresses
only a limited set of optimizations, i.e., method inlining, stack allocation, and lock optimizations.
Moreover, it cannot track event occurrences inserted by a compiler phase. Our approach does not
suffer from the same limitations.

Another limitation of the above technique is that it does not allow instrumenting event types that
are available in the IR but do not have a corresponding bytecode representation. To overcome this
limitation, the authors propose another approach [124] that combines bytecode- and compiler-IR
instrumentation. Their framework exposes interfaces that correspond to some IR-level event types
that the bytecode profiler can reference to define the instrumentation code. The framework properly
inserts the instrumentation code at the correct position in the compilation pipeline. Even though
their method enables the collection of IR-level event types (including memory-barriers, safepoints,
and deoptimizations [126]), it may cause performance degradation due to the instrumentation code
perturbing the subsequent compiler optimization phases. Our approach is less prone to this issue
thanks to the use of markers that will be converted to instrumentation code only at the end of
the compilation pipeline. Furthermore, the approach of Zheng et al. [126] does not allow one to
directly analyze and modify the IR to track additional event types and perform optimizations such
as path profiling, in contrast to our technique.

Jikes RVM [3] offers an API [53] to count event types by inserting instrumentation phases into its
compilation pipeline. Such instrumentation phases insert high-level “count event” instructions that
will be later lowered into actual instrumentation code. However, unlike our approach, Jikes RVM
inserts all the instrumentation phases at the end of the high tier [43], preventing one from tracking
intermediate instructions at the middle of the compilation pipeline. Moreover, event counters
capture the effects of high-tier optimizations but not the effects of subsequent phases that may
be perturbed by “count event” instructions. While we are interested in tracking several frequent
event types, Jikes RVM offers only three built-in event counters, i.e., method invocation, yieldpoint,
and instruction counters. Finally, the lowering phase of event counters does not implement path
profiling, possibly leading to a prohibitively high runtime overhead.

Compiler-IR instrumentation is a well known approach. However, we are not aware of techniques
exposing APIs that allow users specify event types of interest at the compiler-IR level, as our work
enables. Gprof [46] uses compiler-IR instrumentation to collect execution profiles. AddressSani-
tizer [104] and ThreadSanitizer [105, 106] use a compiler-IR instrumentation module and a runtime
library to detect memory errors and data races, respectively. In contrast to our methodology, such
tools solve very specific issues and cannot be employed to extensively analyze compiler behaviour
by collecting runtime metrics.
Other tools perform the instrumentation at the compiler-IR level by inserting instrumentation

phases into the compilation pipeline [12, 40, 102, 115]. In particular, Preuss [81] uses an instru-
mentation phase to perform path profiling and monitor program executions. In contrast to our
approach, such instrumentation phases do not allow users to specify and count event types of
interest. For instance, Preuss’ approach allows only to count path executions within single functions.
Moreover, such approaches do not reduce perturbations and do not allow one to inspect compiler
optimizations.

Some compilers such as GCC [36] and the LLVM compiler infrastructure [58] provide convenient
APIs to insert user-defined compiler phases (called passes) [38, 64]. Such APIs ease developers in
implementing our technique and analyzing other languages and runtimes without the need of
modifying the internal compiler implementation.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

Optimization-Aware Compiler-Level Event Profiling 1:45

The implementation of our profiler leverages the efficient path profiling algorithm proposed
by Ball and Larus [9] to count paths and reduce the execution time overhead, enabling the collection
of several metrics in a single workload execution. Ball [7] discusses a related strategy to perform
efficient event counting. However, that strategy maintains basic-block and/or edge profiles [8]
instead of path profiles and is not suitable for collecting a large set of different event types,
unlike ours. Ammons et al. [4] extend the efficient path-profiling algorithm to exploit hardware
performance counters (HPCs) with flow and context-sensitive profiling. Our technique can be easily
extended to report HPC metrics and context for measurements, enabling more in-depth compiler
optimization analyses.
Bond and McKinley [14] combine instrumentation and sampling to perform efficient path and

edge profiling in JIT compilers. In particular, they implement their technique in Jikes RVM, using
instrumentation to track dynamic path executions and sampling to mitigate the path counting
overhead. Even though their sampling technique lowers execution-time overhead, efficient in-
strumentation leads to more accurate profiles. Moreover, in state-of-the-art JIT compilers such as
Graal, their technique may not be applicable due to the large number of paths and hence require a
modification of the algorithm.
Eyerman et al. [33] study the effect of compiler optimizations on superscalar processors by

performing interval analysis [32, 34, 55, 113] and collecting clock cycles associated to low-level
event types, such as branch and cache misses. Later, similarly to our approach, they enable and
disable compiler optimization phases to study their effects on such metrics. However, the metrics
obtained by their approach represent only the final code emitted by the compiler and do not provide
accurate information on the specific event types and how different compiler optimization phases
influence each other.

Replay JIT compilation [41, 72] is an approach that aims at improving JIT-compiler debuggability.
Using this approach, while compiling a method, the compiler stores all the input code it processes
in a log file. Later, the developer can re-compile the code using the log file, also enabling debugging
options to print diagnostic data. On the one hand, replay compilation reduces non-determinism
and improves experiment repeatability. However, in contrast to our approach, it does not provide
execution metrics that can be analyzed to understand performance speedup or slowdown.

9 CONCLUSION
In this section, we first give our concluding remarks (Section 9.1) and then we discuss some ideas
for future work (Section 9.2).

9.1 Concluding Remarks
We present a novel technique for profiling program event types, which lowers perturbation on
compiler optimizations. Our approach marks locations of interest in the compiler’s IR at the phases
in the compilation pipeline after which no subsequent optimizations affect the corresponding event
types. For these locations, instrumentation code will be inserted only at the end of the compilation
pipeline, with the aim of reducing the chances of affecting compiler optimizations. Our technique
can efficiently and accurately profile bytecode-level event types that map to bytecode instructions
and compiler-internal event types that do not explicitly map to source code or bytecode instructions
such as guards or safepoints.

We provide a generic API for customizing the set of event types of interest. Then, we implement
our methodology in a counting profiler for Graal, which is able to track 43 event types simulta-
neously. We propose two path-profiling strategies that significantly reduce the instrumentation
overhead. The first strategy, called path decoding, is suitable for on-line profiling while the second
strategy, called path counting, further reduces profiling overhead when real-time event count

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

1:46 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

updates are not a requirement. Moreover, we propose a modification to the standard path-profiling
algorithm (called path cutting) to make path profiling applicable to modern JIT compilers. We
show that our technique helps compiler developers analyze and debug compiler behaviour—we
describe two use cases in which we employed the profiler to identify the reasons behind a perfor-
mance speedup, and the causes of an unexpected performance slowdown introduced by a compiler
optimization.

We evaluate our approach, confirming that the two proposed path-profiling strategies with path
cutting help reduce the instrumentation overheadw.r.t. a naive approach called direct event counting.
Our results show that path counting and path decoding introduce an average execution-time
overhead of 1.18× and 2.11×, respectively, while direct event counting leads to an average execution-
time overhead of 3.55×. Moreover, we show that path counting leads to a lower compilation-time
and code-size overhead w.r.t. direct event counting.

9.2 Future Work
The two proposed implementations (i.e., path decoding and path counting) described in this article
do not allow collecting runtime values associated to the profiled event types. For example, the
implementations allow counting the number of method invocations (invokes) but not to collect,
dump, and analyze the runtime values of their arguments, because they are expressed in different
IR nodes than those representing the event type. As part of our future work, we plan to extend the
implementations to support this feature. This would allow one to target more use cases, such as
the collection of program-execution traces.

To lower the difficulty of finding the target phase after which inserting markers for a given event
type, we plan to model the compilation pipeline and use metadata to automatically infer the target
phase and insert the instrumentation phase there, without the developer intervention.
Finally, the proposed profiler can bolster future research of compiler optimizations, assist the

analysis of programs and benchmarks workloads, or serve as a performance-regression-detection
tool.

ACKNOWLEDGMENTS
This work has been supported by Oracle (ERO project 1332) and by the Swiss National Science
Foundation (project 200020_188688).

REFERENCES
[1] 2023. Akka Website. https://akka.io/.
[2] 2023. Twitter Finagle. https://twitter.github.io/finagle/guide/Quickstart.html.
[3] Bowen Alpern, Steve Augart, Stephen Blackburn, Maria Butrico, Anthony Cocchi, Perry Cheng, Julian Dolby, Stephen

Fink, David Grove, Michael Hind, Kathryn McKinley, Mark Mergen, Eliot Moss, Ton Ngo, Vivek Sarkar, and Martin
Trapp. 2005. The Jikes Research Virtual Machine Project: Building an Open-Source Research Community. IBM
Systems Journal 44 (2005), 399–418.

[4] Glenn Ammons, Thomas Ball, and James R. Larus. 1997. Exploiting Hardware Performance Counters with Flow and
Context Sensitive Profiling (PLDI’97). 85–96.

[5] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter Sweeney. 2000. A Comparative Study of Static and Profile-
Based Heuristics for Inlining (DYNAMO ’00). 52–64.

[6] Phil Bagwell. 2001. Ideal Hash Trees. (2001). http://infoscience.epfl.ch/record/64398 Technical report, October 2001.
[7] Thomas Ball. 1994. Efficiently Counting Program Events with Support for On-Line Queries. ACM Trans. Program.

Lang. Syst. 16, 5 (1994), 1399–1410.
[8] Thomas Ball and James Larus. 1994. Optimally Profiling and Tracing Programs. ACM Trans. Program. Lang. Syst. 16,

4 (1994), 1319–1360.
[9] Thomas Ball and James Larus. 1996. Efficient Path Profiling (MICRO’96). 46–57.
[10] Matteo Basso, Andrea Rosà, Luca Omini, and Walter Binder. 2023. Java Vector API: Benchmarking and Performance

Analysis (CC’23). 1–12.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

https://akka.io/
https://twitter.github.io/finagle/guide/Quickstart.html
http://infoscience.epfl.ch/record/64398

Optimization-Aware Compiler-Level Event Profiling 1:47

[11] Matteo Basso, Eduardo Rosales, Filippo Schiavio, Andrea Rosà, and Walter Binder. 2022. Accurate Fork-Join Profiling
on the Java Virtual Machine (Euro-Par’22). 35–50.

[12] Dean Michael Berris, Alistair Veitch, Nevin Heintze, Eric Anderson, and Ning Wang. 2016. XRay: A Function Call
Tracing System. Technical Report. 1–8 pages.

[13] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis (OOPSLA’06). 169–190.

[14] Michael David Bond and Kathryn McKinley. 2005. Continuous Path and Edge Profiling (MICRO’05). 11 pp.–140.
[15] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. 2017. NG2C: Pretenuring Garbage Collection with Dynamic

Generations for HotSpot Big Data Applications (ISMM’17). 2–13.
[16] Michael Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauricio Jose Serrano,

Vugranam Sreedhar, Harini Srinivasan, and John Whaley. 1999. The Jalapeño Dynamic Optimizing Compiler for Java
(JAVA’99). 129–141.

[17] William Chen, Pohua Chang, Thomas Conte, and Wen-Mei Hwu. 1993. The Effect of Code Expanding Optimizations
on Instruction Cache Design. IEEE Trans. Comput. 42, 9 (1993), 1045–1057.

[18] Cliff Click. 1995. Global Code Motion/Global Value Numbering (PLDI’95). 246–257.
[19] Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Intermediate Representation (IR’95). 35–49.
[20] Cliff Click and John Rose. 2002. Fast Subtype Checking in the HotSpot JVM (JGI’02). 96–107.
[21] Ron Cytron, Jeanne Ferrante, Barry Rosen, Mark Wegman, and Frank Kenneth Zadeck. 1991. Efficiently Computing

Static Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13 (1991),
451–490.

[22] DaCapo Project. 2018. The DaCapo Benchmark Suite. http://dacapobench.sourceforge.net/
[23] Benoit Daloze, Chris Seaton, Daniele Bonetta, and Hanspeter Mössenböck. 2015. Techniques and Applications for

Guest-Language Safepoints (ICOOOLPS’15). 8:1–8:10.
[24] David Detlefs and Ole Agesen. 1999. Inlining of Virtual Methods (ECOOP’99). 258–278.
[25] David Dice. 2001. Implementing Fast Java Monitors with Relaxed-Locks (USENIX JVM’01). 79–90.
[26] Dave Dice. 2006. Biased Locking in HotSpot. https://blogs.oracle.com/dave/biased-locking-in-hotspot
[27] David Dice, Mark Moir, and William Scherer III. 2003. Quickly Reacquirable Locks (Patent). US7814488B1 (2003),

1–19. https://patents.google.com/patent/US7814488B1/en
[28] Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon, Christian Wimmer, and Hanspeter Mössenböck.

2013. Graal IR: An Extensible Declarative Intermediate Representation (APPLC’13). 1–9.
[29] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck.

2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler (VMIL’13). 1–10.
[30] Gilles Marie Duboscq. 2016. Combining Speculative Optimizations with Flexible Scheduling of Side-Effects. https:

//resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708
[31] Alexis Engelke and Martin Schulz. 2020. Instrew: Leveraging LLVM for High Performance Dynamic Binary Instru-

mentation (VEE’20). 172–184.
[32] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James Smith. 2006. A Performance Counter Architecture for

Computing Accurate CPI Components (ASPLOS XII). 175–184.
[33] Stijn Eyerman, Lieven Eeckhout, and James Smith. 2008. Studying Compiler Optimizations on Superscalar Processors

Through Interval Analysis (HiPEAC’08’). 114–129.
[34] Stijn Eyerman, James Smith, and Lieven Eeckhout. 2006. Characterizing the BranchMiss Prediction Penalty (ISPASS’06).

48–58.
[35] R. A. Fisher. 1925. Statistical Methods for Research Workers. Oliver & Boyd (Edinburgh).
[36] Free Software Foundation. 2021. GCC, the GNU Compiler Collection. https://gcc.gnu.org/
[37] Free Software Foundation. 2021. Passes and Files of the Compiler. https://gcc.gnu.org/onlinedocs/gccint/Passes.html
[38] Free Software Foundation. 2021. Plugin Pass (Gnu Compiler Collection (GCC) Internals). https://gcc.gnu.org/

onlinedocs/gccint/Plugins-pass.html#Plugins-pass
[39] Alex Garthwaite, David Dice, and Derek White. 2005. Supporting Per-Processor Local-Allocation Buffers Using

Lightweight User-Level Preemption Notification (VEE’05). 24–34.
[40] Giorgis Georgakoudis, Ignacio Laguna, Dimitrios Nikolopoulos, and Martin Schulz. 2017. REFINE: Realistic Fault

Injection via Compiler-Based Instrumentation for Accuracy, Portability and Speed (SC’17). 29:1–29:14.
[41] Andy Georges, Lieven Eeckhout, and Dries Buytaert. 2008. Java Performance Evaluation Through Rigorous Replay

Compilation (OOPSLA’08). 1–18.
[42] GitHub. 2019. Graal Issue 1541. https://github.com/oracle/graal/issues/1541

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

http://dacapobench.sourceforge.net/
https://blogs.oracle.com/dave/biased-locking-in-hotspot
https://patents.google.com/patent/US7814488B1/en
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/Passes.html
https://gcc.gnu.org/onlinedocs/gccint/Plugins-pass.html#Plugins-pass
https://gcc.gnu.org/onlinedocs/gccint/Plugins-pass.html#Plugins-pass
https://github.com/oracle/graal/issues/1541

1:48 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

[43] GitHub. 2021. JikesRVM OptimizationPlanner. https://github.com/JikesRVM/JikesRVM/blob/
38b21f5a663016dbf43771cb2d231f74db0a01c6/rvm/src/org/jikesrvm/compilers/opt/driver/OptimizationPlanner.
java#L285

[44] Google. 2021. An Overview of the TurboFan Compiler. https://docs.google.com/presentation/d/
1H1lLsbclvzyOF3IUR05ZUaZcqDxo7_-8f4yJoxdMooU/edit#slide=id.g18ceb14729_0_135

[45] Google. 2022. Turbofan. https://v8.dev/docs/turbofan
[46] Susan Lois Graham, Peter Bernard Kessler, and Marshall Kirk Mckusick. 1982. Gprof: A Call Graph Execution Profiler

(SIGPLAN’82). 120–126.
[47] Nikola Grcevski, Allan Kielstra, Kevin Stoodley, Mark Stoodley, and Vijay Sundaresan. 2004. Java Just-in-Time

Compiler and Virtual Machine Improvements for Server and Middleware Applications (VM’04). 1–12.
[48] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007. STMBench7: A Benchmark for Software Transactional

Memory (EuroSys’07). 315–324.
[49] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-Truth Fuzzing Benchmark. Proc. ACM

Meas. Anal. Comput. Syst. 4, 3 (2020), 49:1–49:29.
[50] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized Code with Dynamic Deoptimization

(PLDI’92). 32–43.
[51] Urs Hölzle and David Ungar. 1994. Optimizing Dynamically-Dispatched Calls with Run-Time Type Feedback (PLDI’94).

326–336.
[52] Urs Hölzle. 1993. A Fast Write Barrier for Generational Garbage Collectors (OOPSLA/ECOOP ’93 Workshop on Garbage

Collection in Object-Oriented Systems). 1–6.
[53] Jikes™ RVM project. 2021. Profiling Applications with Jikes RVM. https://www.jikesrvm.org/UserGuide/

ProfilingApplicationsWithJikesRVM/index.html#x10-990008
[54] John Rose. 2011. Java Enhancement Proposal 243: Java-Level JVM Compiler Interface. https://openjdk.java.net/jeps/

243
[55] Tejas Karkhanis and James Smith. 2004. A First-Order Superscalar Processor Model (ISCA’04). 338.
[56] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner Litz, and Baris Kasikci. 2020. I-SPY:

Context-Driven Conditional Instruction Prefetching with Coalescing (MICRO’20). 146–159.
[57] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Kenneth Russell, and David Cox.

2008. Design of the Java HotSpot Client Compiler for Java 6. ACM Trans. Archit. Code Optim. 5, 1 (2008), 7:1–7:32.
[58] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transfor-

mation (CGO’04). 75–87.
[59] Doug Lea. 2000. A Java fork/join framework. In Java Grande. 36–43.
[60] Jan-Patrick Lehr. 2016. Counting Performance: Hardware Performance Counter and Compiler Instrumentation

(IWOMP’16). 2187–2198.
[61] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger, Thomas Würthinger, and Hanspeter Mössenböck.

2018. Fast-Path Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler Optimizations (ManLang’18).
1–13.

[62] David Leopoldseder, Lukas Stadler, Manuel Rigger, Thomas Würthinger, and Hanspeter Mössenböck. 2018. A Cost
Model for a Graph-Based Intermediate-Representation in a Dynamic Compiler (VMIL’18). 26–35.

[63] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter Mössenböck. 2018.
Dominance-Based Duplication Simulation (DBDS): Code Duplication to Enable Compiler Optimizations (CGO’18).
126–137.

[64] LLVM Project. 2018. Writing an LLVM Pass. https://releases.llvm.org/5.0.2/docs/WritingAnLLVMPass.html
[65] LLVM Project. 2021. LLVM’s Analysis and Transform Passes. https://llvm.org/docs/Passes.html#transform-passes
[66] Allen Malony, Daniel Reed, and Harry Wijshoff. 1992. Performance Measurement Intrusion and Perturbation Analysis.

IEEE Transactions on Parallel and Distributed Systems 3, 4 (1992), 433–450.
[67] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth, and Nathaniel Nystrom. 2015.

Use at Your Own Risk: The Java Unsafe API in the Wild (OOPSLA’15). 695–710.
[68] Raphael Mosaner. 2020. Machine Learning to Ease Understanding of Data Driven Compiler Optimizations (SPLASH

Companion 2020). 4–6.
[69] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter Sweeney. 2007. Understanding Measurement Pertur-

bation in Trace-based Data (IPDPS’07). 1–6.
[70] Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth Kent. 2020. Insights into WebAssembly: Compilation

Performance and Shared Code Caching in Node.Js (CASCON’20). 163–172.
[71] Martin Odersky and Adriaan Moors. 2009. Fighting bit Rot with Types (Experience Report: Scala Collections) (LIPIcs).

427–451.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

https://github.com/JikesRVM/JikesRVM/blob/38b21f5a663016dbf43771cb2d231f74db0a01c6/rvm/src/org/jikesrvm/compilers/opt/driver/OptimizationPlanner.java#L285
https://github.com/JikesRVM/JikesRVM/blob/38b21f5a663016dbf43771cb2d231f74db0a01c6/rvm/src/org/jikesrvm/compilers/opt/driver/OptimizationPlanner.java#L285
https://github.com/JikesRVM/JikesRVM/blob/38b21f5a663016dbf43771cb2d231f74db0a01c6/rvm/src/org/jikesrvm/compilers/opt/driver/OptimizationPlanner.java#L285
https://docs.google.com/presentation/d/1H1lLsbclvzyOF3IUR05ZUaZcqDxo7_-8f4yJoxdMooU/edit#slide=id.g18ceb14729_0_135
https://docs.google.com/presentation/d/1H1lLsbclvzyOF3IUR05ZUaZcqDxo7_-8f4yJoxdMooU/edit#slide=id.g18ceb14729_0_135
https://v8.dev/docs/turbofan
https://www.jikesrvm.org/UserGuide/ProfilingApplicationsWithJikesRVM/index.html#x10-990008
https://www.jikesrvm.org/UserGuide/ProfilingApplicationsWithJikesRVM/index.html#x10-990008
https://openjdk.java.net/jeps/243
https://openjdk.java.net/jeps/243
https://releases.llvm.org/5.0.2/docs/WritingAnLLVMPass.html
https://llvm.org/docs/Passes.html#transform-passes

Optimization-Aware Compiler-Level Event Profiling 1:49

[72] Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki Komatsu, and Toshio Nakatani. 2006. Replay
Compilation: Improving Debuggability of a Just-in-Time Compiler (OOPSLA’06). 241–252.

[73] Oracle. 2022. GraalVM Repository at GitHub. https://github.com/oracle/graal
[74] Oracle. 2022. Ideal Graph Visualizer. https://docs.oracle.com/en/graalvm/enterprise/20/docs/tools/igv/
[75] Oracle. 2022. Java Platform, Standard Edition Java Flight Recorder Runtime Guide. https://docs.oracle.com/

javacomponents/jmc-5-4/jfr-runtime-guide/toc.htm
[76] Oracle. 2022. JVMCI JDK 8 Repository at GitHub. https://github.com/usi-dag/graal-jvmci-8
[77] Oracle. 2022. Oracle Developer Studio. https://www.oracle.com/tools/developerstudio/
[78] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java Hotspot Server Compiler (JVM’01). 1–13.
[79] Orion Papadakis, Foivos Zakkak, Nikos Foutris, and Christos Kotselidis. 2020. You Can’t Hide You Can’t Run: A

Performance Assessment of Managed Applications on a NUMA Machine (MPLR’20). 80–88.
[80] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell Compiler Inliner. J. Funct. Program. 12,

5 (2002), 393–434.
[81] Adam Preuss. 2021. Implementation of Path Profiling in the Low-Level Virtual-Machine (LLVM) Compiler Infrastruc-

ture. https://llvm.org/pubs/2010-12-Preuss-PathProfiling.pdf
[82] Aleksandar Prokopec. 2016. Pluggable Scheduling for the Reactor Programming Model (AGERE’16). 41–50.
[83] Aleksandar Prokopec. 2017. Analysis of Concurrent Lock-Free Hash Tries with Constant-Time Operations. ArXiv

e-prints (2017). arXiv:1712.09636
[84] Aleksandar Prokopec. 2017. Encoding the Building Blocks of Communication (Onward! 2017). 104–118.
[85] Aleksandar Prokopec. 2018. Cache-tries: Concurrent Lock-free Hash Tries with Constant-time Operations (PPoPP’18).

137–151.
[86] Aleksandar Prokopec. 2018. Efficient Lock-Free Removing and Compaction for the Cache-Trie Data Structure

(Euro-Par’18). 575–589.
[87] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2013. Lock-Free Resizeable Concurrent Tries (LCPC’13).

156–170.
[88] Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky. 2011. A Generic Parallel Collection Framework

(Euro-Par’11). 136–147.
[89] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky. 2012. Concurrent Tries with

Efficient Non-blocking Snapshots (PPoPP’12). 151–160.
[90] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An Optimization-Driven

Incremental Inline Substitution Algorithm for Just-in-Time Compilers (CGO’19). 164–179.
[91] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. 2017. Making Collection

Operations Optimal with Aggressive JIT Compilation (SCALA’17). 29–40.
[92] Aleksandar Prokopec and Martin Odersky. 2015. Isolates, Channels, and Event Streams for Composable Distributed

Programming (Onward! 2015). 171–182.
[93] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,

Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: A Modern
Benchmark Suite for Parallel Applications on the JVM (SPLASH Companion 2019). 11–12.

[94] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,
Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking
Suite for Parallel Applications on the JVM (PLDI’19). 31–47.

[95] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma, Martin Studener, Lubomír
Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. On Evaluating the
Renaissance Benchmarking Suite: Variety, Performance, and Complexity. CoRR abs/1903.10267 (2019).

[96] Andrea Rosà andWalter Binder. 2018. Optimizing Type-specific Instrumentation on the JVMwith Reflective Supertype
Information. Journal of Visual Languages & Computing 49 (2018), 29–45.

[97] Andrea Rosà, Eduardo Rosales, and Walter Binder. 2017. Accurate Reification of Complete Supertype Information for
Dynamic Analysis on the JVM (GPCE’17). 1–13.

[98] Andrea Rosà, Eduardo Rosales, and Walter Binder. 2018. Analyzing and Optimizing Task Granularity on the JVM
(CGO’18). 27–37.

[99] Andrea Rosà, Eduardo Rosales, and Walter Binder. 2019. Analysis and Optimization of Task Granularity on the Java
Virtual Machine. ACM Trans. Program. Lang. Syst. 41, 3, Article 19 (2019), 47 pages.

[100] Eduardo Rosales, Matteo Basso, Andrea Rosà, and Walter Binder. 2023. Profiling and Optimizing Java Streams. The
Art, Science, and Engineering of Programming 7, 3 (2023), 1–43.

[101] Kenneth Russell and David Detlefs. 2006. Eliminating Synchronization-Related Atomic Operations with Biased
Locking and Bulk Rebiasing (OOPSLA’06). 263–272.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

https://github.com/oracle/graal
https://docs.oracle.com/en/graalvm/enterprise/20/docs/tools/igv/
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/toc.htm
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/toc.htm
https://github.com/usi-dag/graal-jvmci-8
https://www.oracle.com/tools/developerstudio/
https://llvm.org/pubs/2010-12-Preuss-PathProfiling.pdf
https://arxiv.org/abs/1712.09636

1:50 Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

[102] Tao Schardl, Tyler Denniston, Damon Doucet, Bradley Kuszmaul, I-Ting Angelina Lee, and Charles Leiserson. 2017.
The CSI Framework for Compiler-Inserted Program Instrumentation. Proc. ACM Meas. Anal. Comput. Syst. 1, 2 (2017),
43:1–43:25.

[103] Robert William Scheifler. 1977. An Analysis of Inline Substitution for a Structured Programming Language. Commun.
ACM 20, 9 (1977), 647–654.

[104] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: A Fast
Address Sanity Checker (USENIX ATC’12). 1–28.

[105] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data Race Detection in Practice (WBIA’09).
62–71.

[106] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy Vyukov. 2012. Dynamic Race
Detection with LLVM Compiler (RV’11). 110–114.

[107] Sevcik, Jaroslav. 2016. Turbofan IR. https://docs.google.com/presentation/d/1Z9iIHojKDrXvZ27gRX51UxHD-
bKf1QcPzSijntpMJBM/edit#slide=id.p

[108] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and Thomas Würthinger. 2015.
Snippets: Taking the High Road to a Low Level. ACM Trans. Archit. Code Optim. 12, 2 (2015), 20:1–20:25.

[109] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and Doug Simon. 2013. An Experimental
Study of the Influence of Dynamic Compiler Optimizations on Scala Performance (SCALA’13). 9:1–9:8.

[110] Lukas Stadler, ThomasWürthinger, and Hanspeter Mössenböck. 2014. Partial Escape Analysis and Scalar Replacement
for Java (CGO’14). 165–174.

[111] Steve Blackburn. 2018. DaCapo Issue 68. http://sf.net/p/dacapobench/bugs/68/
[112] Steve Blackburn. 2020. DaCapo Issue 70. http://sf.net/p/dacapobench/bugs/70/
[113] Tarek M. Taha and Scott Wills. 2008. An Instruction Throughput Model of Superscalar Processors. IEEE Trans.

Comput. 57, 3 (2008), 389–403.
[114] Nathan Tallent, John Mellor-Crummey, and Michael Fagan. 2009. Binary Analysis for Measurement and Attribution

of Program Performance. SIGPLAN Not. 44, 6 (2009), 441–452.
[115] Ronny Tschüter, Johannes Ziegenbalg, Bert Wesarg, Matthias Weber, Christian Herold, Sebastian Döbel, and Ronny

Brendel. 2017. An LLVM Instrumentation Plug-in for Score-P (LLVM-HPC’17). 2:1–2:8.
[116] David Ungar. 1984. Generation Scavenging: A Non-Disruptive High Performance Storage Reclamation Algorithm.

SIGSOFT Softw. Eng. Notes 9, 3 (1984), 157–167.
[117] Mark Wegman and Frank Kenneth Zadeck. 1991. Constant Propagation with Conditional Branches. ACM Trans.

Program. Lang. Syst. 13, 2 (1991), 181–210.
[118] Matthew Edwin Weingarten, Theodoros Theodoridis, and Aleksandar Prokopec. 2022. Inlining-Benefit Prediction

with Interprocedural Partial Escape Analysis (VMIL’22). 13–24.
[119] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter Bernard Kessler, Oleg Pliss, and

Thomas Würthinger. 2019. Initialize Once, Start Fast: Application Initialization at Build Time. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 184:1–184:29.

[120] Thomas Würthinger. 2014. Graal and Truffle: Modularity and Separation of Concerns as Cornerstones for Building a
Multipurpose Runtime (MODULARITY’14). 3–4.

[121] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. 2008. Visualization of Program Dependence
Graphs (CC’08). 193–196.

[122] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh
Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (2016), 56–65.

[123] Peng Zhao and José Nelson Amaral. 2004. To Inline or Not to Inline? Enhanced Inlining Decisions (LCPC’04). 405–419.
[124] Yudi Zheng. 2017. Observable Dynamic Compilation (Doctoral Dissertation). 1–111.
[125] Yudi Zheng, Lubomír Bulej, and Walter Binder. 2015. Accurate Profiling in the Presence of Dynamic Compilation

(OOPSLA’15). 433–450.
[126] Yudi Zheng, Lubomír Bulej, and Walter Binder. 2017. An Empirical Study on Deoptimization in the Graal Compiler.

In ECOOP’17 (LIPIcs, Vol. 74). 30:1–30:30.
[127] Matija Šipek, Dino Muharemagić, Branko Mihaljević, and Aleksander Radovan. 2020. Enhancing Performance of

Cloud-based Software Applications with GraalVM and Quarkus (MIPRO’20). 1746–1751.

Received January 2022; revised June 2022; revised November 2022; accepted March 2023

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 1. Publication date: 2023.

https://docs.google.com/presentation/d/1Z9iIHojKDrXvZ27gRX51UxHD-bKf1QcPzSijntpMJBM/edit#slide=id.p
https://docs.google.com/presentation/d/1Z9iIHojKDrXvZ27gRX51UxHD-bKf1QcPzSijntpMJBM/edit#slide=id.p
http://sf.net/p/dacapobench/bugs/68/
http://sf.net/p/dacapobench/bugs/70/

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Graal Compiler

	3 Optimization-aware Event Profiling
	3.1 Event-Occurrence Identification
	3.2 Instrumentation-Phase Insertion
	3.3 Marker Insertion
	3.4 Instrumentation-Code Generation

	4 Implementation
	4.1 Events, Markers, and Instrumentation Phase
	4.2 Instrumentation-Code Generation
	4.3 Path-Cutting Optimization

	5 Use Cases
	5.1 Motivation
	5.2 Experimental Settings
	5.3 Analyzing Compiler Optimization Phases
	5.4 Simplifying Debugging

	6 Performance Evaluation
	6.1 Evaluation Settings
	6.2 Execution-time Overhead
	6.3 Compilation-time Overhead
	6.4 Code-size Overhead
	6.5 Memory Consumption

	7 Discussion
	7.1 Assumptions
	7.2 Potential Additional Usages
	7.3 Limitations

	8 Related Work
	9 Conclusion
	9.1 Concluding Remarks
	9.2 Future Work

	References

