
Profiling and Optimizing
Java Streams

Eduardo Rosales, Matteo Basso, Andrea Rosà, Walter Binder

<Programming> 2023
March 16, 2023

Università della Svizzera italiana

INTRODUCTION

2

Stream API

▪ Stream API (package java.util.stream)

▪ Data processing

▪ MapReduce-style transformations

▪ Two key abstractions:

▪ Stream

▪ Stream pipeline

3

Stream

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

4

Stream

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Data source

▪ A stream represents a sequence of data
elements coming from a data source

5

Pipeline

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Data source

Data source

6

Pipeline

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Stream
creation

Pipeline

Stream
Creation

▪ A pipeline is associated with the stream

Data source

7

Operations

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Pipeline

▪ The pipeline can contain operations

Data source
Operations

8

Execution Mode

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Pipeline

Data source

Execution Mode

sequential parallel

Stream
Execution

9

Tasks

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Pipeline

Data source

task

task task task task

task task task

▪ Parallel streams may spawn tasks
▪ Tasks are executed in a fork/join pool

by threads called workers

Stream
Execution

Execution Mode

sequential parallel

10

Optimization of Streams

▪ Stream code suffers from important performance penalties when
compared to imperative code [1, 2, 3]

▪ These penalties are mainly caused by:

▪ Abstraction overheads

▪ Due to extra object allocations and reclamations

▪ Abundant virtual method calls

▪ Can prevent Just-In-Time (JIT) compiler optimizations

[1] Biboudis et al. Clash of the Lambdas. ICOOOLPS’14.

[2] Kiselyov et al. Stream Fusion, to Completeness. ACM SIGPLAN Notices, 2017.

[3] Møller et al. Eliminating Abstraction Overhead of Java Stream Pipelines Using Ahead-of-Time Program

Optimization. OOPSLA’20.
11

Optimization of Streams

To mitigate stream-related overheads and optimize streams
developers need means to study the runtime behavior of streams

12

Optimization of Streams

Current approaches to stream optimization:

👎Mainly rely on static analysis techniques

👎Overlook runtime information key to spot stream-related
performance issues

👎Suffer from important limitations to detect all streams used
by a Java application

13

Optimization of Streams – Research Gap

There is a lack of dedicated tools able to dynamically analyze
stream processing on the JVM to help developers locate streams

that impair good performance

▪ Research gap:

14

Contributions

▪ Propose a technique enabling cycle-accurate stream profiling

▪ Accurately measure the computations performed by a stream in
terms of reference cycles (cycles for short)

▪ Analyze stream processing in Renaissance [4]

▪ Optimize stream-related performance issues in Renaissance

▪ Conduct an evaluation on accuracy and overhead

[4] Prokopec et al. Renaissance: Benchmarking Suite for Parallel Applications on the JVM. PLDI’19.

15

PROFILING AND OPTIMIZING
JAVA STREAMS

16

Cycle-accurate Stream Profiling

▪ Our technique to profile stream executions is implemented in
StreamProf, the first dedicated stream profiler for the JVM

▪ Features:

▪ Detects every form of stream execution

▪ Shows the impact of stream processing on application
performance

▪ Generates accurate profiles that help developers detect
problematic streams

17

Profiling Model

StreamProf targets stream executions:

▪ Sequential stream executions:

▪ Carried out by the current thread

▪ Parallel stream executions:

▪ Typically involve the execution of tasks

▪ Tasks can be executed by multiple workers

18

Profiling Model

▪ Nested stream: A stream whose execution is triggered by (and
occurs during the execution of) another outer stream

▪ Multiple nesting levels are possible

Nested stream

Outer stream

19

Profiling Model

▪ Location: Fully qualified name of the caller of the method
executing the stream

transactionList.stream()
.parallel()
.filter(t -> t.getStatus() == Transaction.VALID)
.map(Transaction::getID)
.collect(Collectors.toSet());

1290
1291
1292
1293
1294

ExampleClass.exampleMethod

20

Profiling Model

We model stream execution around the concept of span

Span: The interval in which a stream is executed by a thread

21

Profiling Model

Thread cycles

Computations
of a stream

22

Profiling Model

Span begin Span end

Thread cycles

23

Profiling Model

Span begin Span end

cyclesbegin

Thread cycles

24

Profiling Model

Span begin Span end

cyclesbegin cyclesend

Thread cycles

25

Profiling Model

measured cycles = cyclesend – cyclesbegin

Span begin Span end

cyclesbegin cyclesend

Thread cycles

26

Profiling Model

▪ For each span we compute the corresponding cycles and location

Span

Cycles Location

27

Profiling Methodology

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Profiles

Compensation
Compensated

Profiles

Application
execution Post-processing

Estimated
costs

28

Profiling Methodology

▪ Profiling: Profile every span and associate it with the respective
measured cycles and location

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Profiles

Compensation
Compensated

Profiles

Application
execution Post-processing

Estimated
costs

29

Profiling Methodology

Difference when profiling sequential and parallel streams:

▪ Sequential stream execution:

▪ Carried out by a single thread

▪ Execution represented by a single span

▪ The measured cycles in the span can be directly attributed to the
sequential stream execution
▪ No stream ID required to identify a sequential stream

▪ Anonymous span:
▪ Represents a sequential stream execution

Thread
cycles

30

Profiling Methodology

▪ Parallel stream execution:

▪ Typically carried out by multiple tasks

▪ To aggregate the measured cycles of all spans

- A stream ID required to identify the parallel stream execution

▪ Named spans: All spans associated with the same parallel

stream execution

multiple spans

31

Profiling Methodology

▪ Two named spans:

▪ Primordial span: Represents the primordial task

▪ Associated with a new unique stream ID

▪ Support span: Any named span other than the primordial span

▪ Retrieves the already generated stream ID

Primordial
task

32

Profiling Methodology

The instrumentation relies on a tracer:

▪ Reads cycle counters and stores the values in the form of 2 events:

▪ span-begin cyclesbegin

▪ span-end cyclesend

span-begin

span-end

Trace

cyclesbegin cyclesend

33

Profiling Methodology

▪ The tracer maintains thread-local buffers

▪ Stores span information associated to a thread in memory

▪ No synchronization (only when allocating new buffers)

34

Profiling Methodology

▪ The tracer dumps data upon application completion:

▪ Dumps one trace per thread participating in stream processing

▪ Traces are post-processed offline

span-begin

span-end

Trace - Thread 1

span-begin

span-end

Trace - Thread 2

span-begin

span-end

Trace - Thread n

…

35

Profiling Methodology

▪ Span reconstruction: each stream profile is reconstructed from
the span-begin and span-end events stored in the dumped traces

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Compensation
Compensated

Profiles

Application
execution Post-processing

Profiles

Estimated
costs

span-begin

span-end

per-thread traces

& location info

Span reconstruction

Profiles

36

Profiling Methodology

Measured cycles computation:

▪ Sequential streams:

▪ Computed from the single anonymous span

▪ Parallel streams:

▪ Computed from the respective multiple named spans

Primordial
span

Support
span

Support
span

Anonymous
span

37

Profiling Methodology

▪ The inserted instrumentation code introduces extra cycles that
are included in the measured cycles of each span

▪ Decreasing profile accuracy

▪ To remove these extra cycles they need to be estimated, which is
the aim of the calibration phase

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Compensation
Compensated

Profiles

Application
execution Post-processing

Profiles

Estimated
costs

38

Profiling Methodology

▪ Calibration: Produces estimated costs, i.e., estimations of the
extra cycles required to profile spans

▪ The estimated costs are approximated by constants

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Compensation
Compensated

Profiles

Application
execution Post-processing

Profiles

Estimated
costs

39

Profiling Methodology

▪ Compensation: Produce compensated cycles, i.e., the measured
cycles for a span after the removal of both:

▪ Estimated costs (the output of the calibration)

▪ Nested cycles, i.e., cycles elapsed due to nested spans

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Compensation

Application
execution Post-processing

Estimated
costs

Compensated
Profiles

Profiles

40

Profiling Methodology

Profiling
Span

Reconstruction

Calibration

Traces &
location info

Compensation

Application
execution Post-processing

Estimated
costs

Compensated
Profiles

Profiles

Stream profile

Compensated
cycles

Location

41

Optimizing Streams - Renaissance

Using StreamProf to optimize stream processing:

▪ Target applications:

▪ Stream-based workloads from Renaissance [8]

▪ mnemonics

▪ par-mnemonics

▪ Analysis targets steady state

▪ Testbed:

▪ M1: 8 core, 128 GB RAM

▪ M2: 18 cores, 256 GB RAM

[8] Prokopec et al. Renaissance: Benchmarking Suite for Parallel Applications on the JVM.

PLDI’19.
42

OPTIMIZATION 1:
REMOVING UNNEEDED STREAMS

43

Profiling and Optimizing Streams – Optimization I

▪ Customized heatmap of stream executions in mnemonics

44

Profiling and Optimizing Streams – Optimization I

x-axis: streams are grouped by their compensated cycles

45

Profiling and Optimizing Streams – Optimization I

y-axis: streams are grouped by their nesting level

46

Profiling and Optimizing Streams – Optimization I

Cell: reports the number of stream executions for a given

range of nesting levels and cycles
47

Profiling and Optimizing Streams – Optimization I

Heat: the color of a cell indicates the

total cycles of all the stream executions in the group
48

Profiling and Optimizing Streams – Optimization I

Darker regions: good targets for stream code optimizations

49

Profiling and Optimizing Streams – Optimization I

Hot locations: locations in application code responsible for

most of the stream processing

Locations

50

Profiling and Optimizing Streams – Optimization I

▪ Optimization I:

▪ Target: mnemonics and par-mnemonics

▪ MnemonicsCoderWithStream.wordForNum:

▪ Recursive method

▪ Many stream executions

⚠️ Finding: These streams always produce the same result

▪ The result does not depend on any input of the current
recursion level

▪ Optimization: Move the streams out the recursive code

✅ Benefit: Reduce overheads due to unneeded stream executions

51

Profiling and Optimizing Streams – Optimization I

▪ MnemonicsCoderWithStream.lambda$encode$9:

▪ Many stream executions

⚠️ Finding: These streams are always created from an empty
set

- The empty set never changes

- The streams do not contribute in any form to the workload
output

▪ Optimization: Remove the unneeded streams

✅ Benefit: Reduce overheads due to unneeded stream
executions

52

Profiling and Optimizing Streams – Optimization I

▪ Heatmaps of the original (left) and optimized (right) mnemonics

53

Profiling and Optimizing Streams – Optimization I

▪ Heatmaps of the original (left) and optimized (right) mnemonics

54

OPTIMIZATION 2:
IMPROVING LOAD IMBALANCE

55

Profiling and Optimizing Streams – Optimization II

▪ Optimization II:

▪ Target: par-mnemonics

▪ StreamProf reports the distribution of cycles per worker

⚠️ Finding: Only 2 workers execute more than 99.99% of the
total cycles (on both machines)

▪ Optimization: Tune task granularity to improve load balance

✅ Benefit: Improve parallel stream execution performance

CPU

CORE CORE

CORE CORE

task

task task task task task

task task task task

task task task task task

task task task task task 56

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

57

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

58

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

59

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

60

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

61

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

▪ speedup = exec time original workload
exec time optimized workload

62

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

▪ 95% confidence intervals (CI)

63

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

✅Removing unneeded stream processing (opt1) improves the performance
of both mnemonics and par-mnemonics
✅Only 6 lines of code changed

64

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

✅Improving load balance (opt2) results in performance gains in
par-mnemonics
✅ 2 lines of code changed

65

Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

✅Average speedup is 3.94x considering all workloads on both machines

66

ACCURACY AND OVERHEAD
EVALUATION

67

Accuracy and Overhead Evaluation

▪ Average Cycles Per Span (CPS)

▪ Expectation:

▪ For workloads with a low CPS

- the relative cost of the inserted instrumentation code

- is higher than for workloads with a higher CPS

ACCURACY OVERHEAD

C
P

S

C
P

S

68

Accuracy and Overhead Evaluation

▪ Baseline computation:

▪ To compute CPS and accuracy, we need a baseline

▪ All evaluated workloads take place only within stream executions

▪ Baseline: total cycles elapsed by all threads involved in stream
processing

baseline = cycles1 – cycles0

Begin of
steady state

cycles0 cycles1

End of
steady state

Workload
execution

69

Accuracy and Overhead Evaluation

▪ CPS computation:

CPS = baseline / total_spans

▪ Accuracy computation:

RE = baseline – compensated_cycles

baseline

Accuracy = 1 – RE

70

Accuracy and Overhead Evaluation

▪ Testbed:

▪ All stream-based workloads from Renaissance

▪ mnemonics

▪ par-mnemonics

▪ scrabble

▪ OpenJDK [5]

▪ Collection of stream-based workloads released by the
developers of OpenJDK

▪ JEDI [6]

▪ Benchmark suite consisting of TPCH-queries recast to Java
Streams

[5] https://github.com/usi-dag/jdk20u/tree/master/test/micro/org/openjdk/bench/java/util/stream

[6] https://github.com/usi-dag/JEDI
71

https://github.com/usi-dag/jdk20u/tree/master/test/micro/org/openjdk/bench/java/util/stream
https://github.com/usi-dag/JEDI

ACCURACY
EVALUATION

72

Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

73

Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

74

Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

▪ Accuracy shown as percentage

75

Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

▪ Positive correlation between CPS and accuracy
▪ PCC: 0.71, considering all workloads on M1 and M2

76

Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

JEDI (mean)
M1 91.55

M2 90.34

OpenJDK (mean)
M1 94.82

M2 96.73 77

OVERHEAD
EVALUATION

78

Overhead Evaluation

Benchmark Version Machine
Time
[ms]

CPS
Overhead

Factor 95% CI

mnemonics

orig
M1 4,944.72 915 1.55 (1.51, 1.60)

M2 3,303.64 679 1.46 (1.44, 1.49)

opt 1
M1 1,200.70 2,972 1.16 (1.15, 1.16)

M2 981.97 2,699 1.12 (1.12, 1.13)

par-mnemonics

orig
M1 4,419.53 1,027 1.51 (1.47, 1.54)

M2 2,977.83 761 1.41 (1.38, 1.45)

opt 1
M1 1,106.22 3,290 1.13 (1.13, 1.14)

M2 905.19 2,989 1.11 (1.11, 1.12)

opt 2
M1 880.09 3,241 1.10 (1.10, 1.11)

M2 764.63 3,436 1.09 (1.08, 1.09)

scrabble orig
M1 310.84 1,481 1.43 (1.42, 1.44)

M2 187.09 2,151 1.23 (1.22, 1.23)

Overhead:
▪ slowdown factor = exec time workload with profiling

exec time workload without profiling 79

Overhead Evaluation

Benchmark Version Machine
Time
[ms]

CPS
Overhead

Factor 95% CI

mnemonics

orig
M1 4,944.72 915 1.55 (1.51, 1.60)

M2 3,303.64 679 1.46 (1.44, 1.49)

opt 1
M1 1,200.70 2,972 1.16 (1.15, 1.16)

M2 981.97 2,699 1.12 (1.12, 1.13)

par-mnemonics

orig
M1 4,419.53 1,027 1.51 (1.47, 1.54)

M2 2,977.83 761 1.41 (1.38, 1.45)

opt 1
M1 1,106.22 3,290 1.13 (1.13, 1.14)

M2 905.19 2,989 1.11 (1.11, 1.12)

opt 2
M1 880.09 3,241 1.10 (1.10, 1.11)

M2 764.63 3,436 1.09 (1.08, 1.09)

scrabble orig
M1 310.84 1,481 1.43 (1.42, 1.44)

M2 187.09 2,151 1.23 (1.22, 1.23)

▪ Negative correlation between CPS and overhead
▪ PCC: -0.96, considering all workloads on M1 and M2

80

Overhead Evaluation

Benchmark Version Machine
Time
[ms]

CPS
Overhead

Factor 95% CI

mnemonics

orig
M1 4,944.72 915 1.55 (1.51, 1.60)

M2 3,303.64 679 1.46 (1.44, 1.49)

opt 1
M1 1,200.70 2,972 1.16 (1.15, 1.16)

M2 981.97 2,699 1.12 (1.12, 1.13)

par-mnemonics

orig
M1 4,419.53 1,027 1.51 (1.47, 1.54)

M2 2,977.83 761 1.41 (1.38, 1.45)

opt 1
M1 1,106.22 3,290 1.13 (1.13, 1.14)

M2 905.19 2,989 1.11 (1.11, 1.12)

opt 2
M1 880.09 3,241 1.10 (1.10, 1.11)

M2 764.63 3,436 1.09 (1.08, 1.09)

scrabble orig
M1 310.84 1,481 1.43 (1.42, 1.44)

M2 187.09 2,151 1.23 (1.22, 1.23)

JEDI (mean)
M1 1.13

M2 1.15

OpenJDK (mean)
M1 1.07

M2 1.06 81

Limitations

▪ Limitations of the technique:

▪ Additional sources of perturbation (e.g., prevention of JIT
compiler optimizations) are not compensated

▪ The profiles produced using our technique are platform
dependent and require the availability of per-thread virtualized
reference-cycle counters

82

Summary of Contributions

▪ New technique enabling cycle-accurate profiling of stream
executions

▪ Implemented in StreamProf, a novel stream profiler for the JVM

▪ Uses a perturbation-compensation technique

▪ Analysis of Renaissance, revealing previously unknown stream-
related performance issues

▪ Optimization of two stream-based workloads from Renaissance

▪ Average speedup: 3.94x

▪ Evaluation results show that our profiling technique is efficient
and yields accurate profiles

83

Thanks a lot for your attention!

84

	Slide 1: Profiling and Optimizing Java Streams
	Slide 2
	Slide 3: Stream API
	Slide 4: Stream
	Slide 5: Stream
	Slide 6: Pipeline
	Slide 7: Pipeline
	Slide 8: Operations
	Slide 9: Execution Mode
	Slide 10: Tasks
	Slide 11: Optimization of Streams
	Slide 12: Optimization of Streams
	Slide 13: Optimization of Streams
	Slide 14: Optimization of Streams – Research Gap
	Slide 15: Contributions
	Slide 16
	Slide 17: Cycle-accurate Stream Profiling
	Slide 18: Profiling Model
	Slide 19: Profiling Model
	Slide 20: Profiling Model
	Slide 21: Profiling Model
	Slide 22: Profiling Model
	Slide 23: Profiling Model
	Slide 24: Profiling Model
	Slide 25: Profiling Model
	Slide 26: Profiling Model
	Slide 27: Profiling Model
	Slide 28: Profiling Methodology
	Slide 29: Profiling Methodology
	Slide 30: Profiling Methodology
	Slide 31: Profiling Methodology
	Slide 32: Profiling Methodology
	Slide 33: Profiling Methodology
	Slide 34: Profiling Methodology
	Slide 35: Profiling Methodology
	Slide 36: Profiling Methodology
	Slide 37: Profiling Methodology
	Slide 38: Profiling Methodology
	Slide 39: Profiling Methodology
	Slide 40: Profiling Methodology
	Slide 41: Profiling Methodology
	Slide 42: Optimizing Streams - Renaissance
	Slide 43
	Slide 44: Profiling and Optimizing Streams – Optimization I
	Slide 45: Profiling and Optimizing Streams – Optimization I
	Slide 46: Profiling and Optimizing Streams – Optimization I
	Slide 47: Profiling and Optimizing Streams – Optimization I
	Slide 48: Profiling and Optimizing Streams – Optimization I
	Slide 49: Profiling and Optimizing Streams – Optimization I
	Slide 50: Profiling and Optimizing Streams – Optimization I
	Slide 51: Profiling and Optimizing Streams – Optimization I
	Slide 52: Profiling and Optimizing Streams – Optimization I
	Slide 53: Profiling and Optimizing Streams – Optimization I
	Slide 54: Profiling and Optimizing Streams – Optimization I
	Slide 55
	Slide 56: Profiling and Optimizing Streams – Optimization II
	Slide 57: Speedups
	Slide 58: Speedups
	Slide 59: Speedups
	Slide 60: Speedups
	Slide 61: Speedups
	Slide 62: Speedups
	Slide 63: Speedups
	Slide 64: Speedups
	Slide 65: Speedups
	Slide 66: Speedups
	Slide 67
	Slide 68: Accuracy and Overhead Evaluation
	Slide 69: Accuracy and Overhead Evaluation
	Slide 70: Accuracy and Overhead Evaluation
	Slide 71: Accuracy and Overhead Evaluation
	Slide 72
	Slide 73: Accuracy Evaluation
	Slide 74: Accuracy Evaluation
	Slide 75: Accuracy Evaluation
	Slide 76: Accuracy Evaluation
	Slide 77: Accuracy Evaluation
	Slide 78
	Slide 79: Overhead Evaluation
	Slide 80: Overhead Evaluation
	Slide 81: Overhead Evaluation
	Slide 82: Limitations
	Slide 83: Summary of Contributions
	Slide 84

