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INTRODUCTION
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Stream API

▪ Stream API (package java.util.stream) 

▪ Data processing

▪ MapReduce-style transformations

▪ Two key abstractions:

▪ Stream

▪ Stream pipeline
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Stream

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());
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Stream

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Data source

▪ A stream represents a sequence of data 
elements coming from a data source
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Pipeline

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Data source

Data source
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Pipeline

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Stream
creation

Pipeline

Stream 
Creation

▪ A pipeline is associated with the stream

Data source
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Operations

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Pipeline

▪ The pipeline can contain operations

Data source
Operations
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Execution Mode

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Pipeline

Data source

Execution Mode

sequential parallel

Stream 
Execution
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Tasks

transactionList.stream()

.parallel()

.filter(t -> t.getStatus() == Transaction.VALID)

.map(Transaction::getID)

.collect(Collectors.toSet());

Pipeline

Data source

task

task task task task

task task task

▪ Parallel streams may spawn tasks
▪ Tasks are executed in a fork/join pool

by threads called workers

Stream 
Execution

Execution Mode

sequential parallel
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Optimization of Streams

▪ Stream code suffers from important performance penalties when 
compared to imperative code [1, 2, 3]

▪ These penalties are mainly caused by: 

▪ Abstraction overheads

▪ Due to extra object allocations and reclamations 

▪ Abundant virtual method calls

▪ Can prevent Just-In-Time (JIT) compiler optimizations

[1] Biboudis et al. Clash of the Lambdas. ICOOOLPS’14.

[2] Kiselyov et al. Stream Fusion, to Completeness. ACM SIGPLAN Notices, 2017.

[3] Møller et al. Eliminating Abstraction Overhead of Java Stream Pipelines Using Ahead-of-Time Program 

Optimization. OOPSLA’20.
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Optimization of Streams

To mitigate stream-related overheads and optimize streams 
developers need means to study the runtime behavior of streams
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Optimization of Streams

Current approaches to stream optimization:

👎Mainly rely on static analysis techniques

👎Overlook runtime information key to spot stream-related 
performance issues

👎Suffer from important limitations to detect all streams used 
by a Java application 
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Optimization of Streams – Research Gap

There is a lack of dedicated tools able to dynamically analyze 
stream processing on the JVM to help developers locate streams 

that impair good performance

▪ Research gap:
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Contributions

▪ Propose a technique enabling cycle-accurate stream profiling

▪ Accurately measure the computations performed by a stream in 
terms of reference cycles (cycles for short)

▪ Analyze stream processing in Renaissance [4]

▪ Optimize stream-related performance issues in Renaissance

▪ Conduct an evaluation on accuracy and overhead

[4] Prokopec et al. Renaissance: Benchmarking Suite for Parallel Applications on the JVM. PLDI’19.
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PROFILING AND OPTIMIZING
JAVA STREAMS
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Cycle-accurate Stream Profiling

▪ Our technique to profile stream executions is implemented in 
StreamProf,  the first dedicated stream profiler for the JVM

▪ Features:

▪ Detects every form of stream execution

▪ Shows the impact of stream processing on application 
performance

▪ Generates accurate profiles that help developers detect 
problematic streams

17



Profiling Model

StreamProf targets stream executions:

▪ Sequential stream executions:

▪ Carried out by the current thread

▪ Parallel stream executions:

▪ Typically involve the execution of tasks

▪ Tasks can be executed by multiple workers
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Profiling Model

▪ Nested stream: A stream whose execution is triggered by (and 
occurs during the execution of) another outer stream

▪ Multiple nesting levels are possible

Nested stream

Outer stream
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Profiling Model

▪ Location: Fully qualified name of the caller of the method 
executing the stream

transactionList.stream()
.parallel()
.filter(t -> t.getStatus() == Transaction.VALID)
.map(Transaction::getID)
.collect(Collectors.toSet());

1290
1291
1292
1293
1294

ExampleClass.exampleMethod
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Profiling Model

We model stream execution around the concept of span

Span: The interval in which a stream is executed by a thread

21



Profiling Model

Thread cycles

Computations 
of a stream
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Profiling Model

Span begin Span end

Thread cycles
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Profiling Model

Span begin Span end

cyclesbegin

Thread cycles
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Profiling Model

Span begin Span end

cyclesbegin cyclesend

Thread cycles
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Profiling Model

measured cycles = cyclesend – cyclesbegin

Span begin Span end

cyclesbegin cyclesend

Thread cycles
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Profiling Model

▪ For each span we compute the corresponding cycles and location

Span

Cycles Location
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Profiling Methodology

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Profiles

Compensation
Compensated 

Profiles

Application 
execution Post-processing

Estimated 
costs
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Profiling Methodology

▪ Profiling: Profile every span and associate it with the respective 
measured cycles and location

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Profiles

Compensation
Compensated 

Profiles

Application 
execution Post-processing

Estimated 
costs
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Profiling Methodology

Difference when profiling sequential and parallel streams:

▪ Sequential stream execution:

▪ Carried out by a single thread

▪ Execution represented by a single span

▪ The measured cycles in the span can be directly attributed to the 
sequential stream execution
▪ No stream ID required to identify a sequential stream

▪ Anonymous span: 
▪ Represents a sequential stream execution

Thread 
cycles
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Profiling Methodology

▪ Parallel stream execution:

▪ Typically carried out by multiple tasks

▪ To aggregate the measured cycles of all spans

- A stream ID required to identify the parallel stream execution

▪ Named spans: All spans associated with the same parallel 

stream execution

multiple spans
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Profiling Methodology

▪ Two named spans:

▪ Primordial span: Represents the primordial task

▪ Associated with a new unique stream ID 

▪ Support span: Any named span other than the primordial span

▪ Retrieves the already generated stream ID

Primordial 
task
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Profiling Methodology

The instrumentation relies on a tracer:

▪ Reads cycle counters and stores the values in the form of 2 events:

▪ span-begin cyclesbegin

▪ span-end cyclesend

span-begin

span-end

Trace

cyclesbegin cyclesend
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Profiling Methodology

▪ The tracer maintains thread-local buffers

▪ Stores span information associated to a thread in memory

▪ No synchronization (only when allocating new buffers)

34



Profiling Methodology

▪ The tracer dumps data upon application completion:

▪ Dumps one trace per thread participating in stream processing

▪ Traces are post-processed offline

span-begin

span-end

Trace - Thread 1

span-begin

span-end

Trace - Thread 2

span-begin

span-end

Trace - Thread n

…
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Profiling Methodology

▪ Span reconstruction: each stream profile is reconstructed from 
the span-begin and span-end events stored in the dumped traces

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Compensation
Compensated 

Profiles

Application 
execution Post-processing

Profiles

Estimated 
costs

span-begin

span-end

per-thread traces 

& location info

Span reconstruction

Profiles
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Profiling Methodology

Measured cycles computation:

▪ Sequential streams:

▪ Computed from the single anonymous span

▪ Parallel streams:

▪ Computed from the respective multiple named spans

Primordial 
span

Support 
span

Support 
span

Anonymous 
span
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Profiling Methodology

▪ The inserted instrumentation code introduces extra cycles that 
are included in the measured cycles of each span

▪ Decreasing profile accuracy

▪ To remove these extra cycles they need to be estimated, which is 
the aim of the calibration phase

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Compensation
Compensated 

Profiles

Application 
execution Post-processing

Profiles

Estimated 
costs
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Profiling Methodology

▪ Calibration: Produces estimated costs, i.e., estimations of the 
extra cycles required to profile spans

▪ The estimated costs are approximated by constants

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Compensation
Compensated 

Profiles

Application 
execution Post-processing

Profiles

Estimated 
costs
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Profiling Methodology

▪ Compensation: Produce compensated cycles, i.e., the measured 
cycles for a span after the removal of both:

▪ Estimated costs (the output of the calibration)

▪ Nested cycles, i.e., cycles elapsed due to nested spans

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Compensation

Application 
execution Post-processing

Estimated 
costs

Compensated 
Profiles

Profiles
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Profiling Methodology

Profiling
Span

Reconstruction

Calibration

Traces & 
location info

Compensation

Application 
execution Post-processing

Estimated 
costs

Compensated 
Profiles

Profiles

Stream profile

Compensated 
cycles

Location

41



Optimizing Streams - Renaissance

Using StreamProf to optimize stream processing:

▪ Target applications:

▪ Stream-based workloads from Renaissance [8]

▪ mnemonics

▪ par-mnemonics

▪ Analysis targets steady state

▪ Testbed:

▪ M1: 8 core, 128 GB RAM

▪ M2: 18 cores, 256 GB RAM

[8] Prokopec et al. Renaissance: Benchmarking Suite for Parallel Applications on the JVM. 

PLDI’19.
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OPTIMIZATION 1:
REMOVING UNNEEDED STREAMS

43



Profiling and Optimizing Streams – Optimization I

▪ Customized heatmap of stream executions in mnemonics
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Profiling and Optimizing Streams – Optimization I

x-axis: streams are grouped by their compensated cycles 
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Profiling and Optimizing Streams – Optimization I

y-axis: streams are grouped by their nesting level
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Profiling and Optimizing Streams – Optimization I

Cell: reports the number of stream executions for a given 

range of nesting levels and cycles
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Profiling and Optimizing Streams – Optimization I

Heat: the color of a cell indicates the 

total cycles of all the stream executions in the group
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Profiling and Optimizing Streams – Optimization I

Darker regions: good targets for stream code optimizations
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Profiling and Optimizing Streams – Optimization I

Hot locations: locations in application code responsible for 

most of the stream processing

Locations
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Profiling and Optimizing Streams – Optimization I

▪ Optimization I:

▪ Target: mnemonics and par-mnemonics

▪ MnemonicsCoderWithStream.wordForNum: 

▪ Recursive method

▪ Many stream executions

⚠️ Finding: These streams always produce the same result

▪ The result does not depend on any input of the current 
recursion level

▪ Optimization: Move the streams out the recursive code

✅ Benefit: Reduce overheads due to unneeded stream executions
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Profiling and Optimizing Streams – Optimization I

▪ MnemonicsCoderWithStream.lambda$encode$9: 

▪ Many stream executions

⚠️ Finding: These streams are always created from an empty 
set

- The empty set never changes

- The streams do not contribute in any form to the workload 
output

▪ Optimization: Remove the unneeded streams

✅ Benefit: Reduce overheads due to unneeded stream 
executions
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Profiling and Optimizing Streams – Optimization I

▪ Heatmaps of the original (left) and optimized (right) mnemonics
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Profiling and Optimizing Streams – Optimization I

▪ Heatmaps of the original (left) and optimized (right) mnemonics
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OPTIMIZATION 2:
IMPROVING LOAD IMBALANCE
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Profiling and Optimizing Streams – Optimization II

▪ Optimization II:

▪ Target: par-mnemonics

▪ StreamProf reports the distribution of cycles per worker 

⚠️ Finding: Only 2 workers execute more than 99.99% of the 
total cycles (on both machines)

▪ Optimization: Tune task granularity to improve load balance

✅ Benefit: Improve parallel stream execution performance

CPU

CORE CORE

CORE CORE

task

task task task task task

task task task task

task task task task task

task task task task task 56



Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)
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Speedups
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Speedups
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Speedups
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Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI
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Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

▪ speedup =     exec time original workload
exec time optimized workload
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Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

▪ 95% confidence intervals (CI)
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Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

✅Removing unneeded stream processing (opt1) improves the performance 
of both mnemonics and par-mnemonics
✅Only 6 lines of code changed
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Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

✅Improving load balance (opt2) results in performance gains in 
par-mnemonics
✅ 2 lines of code changed
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Speedups

Benchmark Version Machine
Time
[ms]

Speedup

Factor 95% CI

mnemonics

orig

M1 4,944.72

M2 3,303.64

opt 1
M1 1,200.70 4.09 (3.99, 4.19)

M2 981.97 3.36 (3.32, 3.40)

par-mnemonics

orig
M1 4,419.53

M2 2,977.83

opt 1
M1 1,106.22 3.98 (3.89, 4.04)

M2 905.19 3.27 (3.20, 3.33)

opt 2
M1 880.09 5.00 (4.91, 5.10)

M2 764.63 3.88 (3.80, 3.96)

✅Average speedup is 3.94x considering all workloads on both machines
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ACCURACY AND OVERHEAD 
EVALUATION
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Accuracy and Overhead Evaluation

▪ Average Cycles Per Span (CPS)

▪ Expectation:

▪ For workloads with a low CPS

- the relative cost of the inserted instrumentation code

- is higher than for workloads with a higher CPS

ACCURACY OVERHEAD

C
P

S

C
P

S
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Accuracy and Overhead Evaluation

▪ Baseline computation:

▪ To compute CPS and accuracy, we need a baseline

▪ All evaluated workloads take place only within stream executions

▪ Baseline: total cycles elapsed by all threads involved in stream 
processing

baseline = cycles1 – cycles0

Begin of 
steady state

cycles0 cycles1

End of 
steady state

Workload 
execution
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Accuracy and Overhead Evaluation

▪ CPS computation:

CPS = baseline / total_spans

▪ Accuracy computation:

RE =     baseline – compensated_cycles

baseline

Accuracy = 1 – RE
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Accuracy and Overhead Evaluation

▪ Testbed:

▪ All stream-based workloads from Renaissance

▪ mnemonics

▪ par-mnemonics

▪ scrabble

▪ OpenJDK [5]

▪ Collection of stream-based workloads released by the 
developers of OpenJDK

▪ JEDI [6]

▪ Benchmark suite consisting of TPCH-queries recast to Java 
Streams

[5] https://github.com/usi-dag/jdk20u/tree/master/test/micro/org/openjdk/bench/java/util/stream

[6] https://github.com/usi-dag/JEDI
71
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Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13
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Accuracy Evaluation
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Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

▪ Accuracy shown as percentage
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Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

▪ Positive correlation between CPS and accuracy
▪ PCC: 0.71, considering all workloads on M1 and M2
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Accuracy Evaluation

Benchmark Version Machine CPS Accuracy [%]

mnemonics

orig
M1 915 87.99

M2 679 95.18

opt 1
M1 2,972 98.99

M2 2,699 99.54

par-mnemonics

orig
M1 1,027 88.27

M2 761 95.83

opt 1
M1 3,290 99.68

M2 2,989 99.66

opt 2
M1 3,241 99.42

M2 3,436 94.98

scrabble orig
M1 1,481 89.97

M2 2,151 97.13

JEDI (mean)
M1 91.55

M2 90.34

OpenJDK (mean)
M1 94.82

M2 96.73 77



OVERHEAD
EVALUATION
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Overhead Evaluation

Benchmark Version Machine
Time
[ms]

CPS
Overhead

Factor 95% CI

mnemonics

orig
M1 4,944.72 915 1.55 (1.51, 1.60)

M2 3,303.64 679 1.46 (1.44, 1.49)

opt 1
M1 1,200.70 2,972 1.16 (1.15, 1.16)

M2 981.97 2,699 1.12 (1.12, 1.13)

par-mnemonics

orig
M1 4,419.53 1,027 1.51 (1.47, 1.54)

M2 2,977.83 761 1.41 (1.38, 1.45)

opt 1
M1 1,106.22 3,290 1.13 (1.13, 1.14)

M2 905.19 2,989 1.11 (1.11, 1.12)

opt 2
M1 880.09 3,241 1.10 (1.10, 1.11)

M2 764.63 3,436 1.09 (1.08, 1.09)

scrabble orig
M1 310.84 1,481 1.43 (1.42, 1.44)

M2 187.09 2,151 1.23 (1.22, 1.23)

Overhead: 
▪ slowdown factor =     exec time workload with profiling 

exec time workload without profiling 79



Overhead Evaluation

Benchmark Version Machine
Time
[ms]

CPS
Overhead

Factor 95% CI

mnemonics

orig
M1 4,944.72 915 1.55 (1.51, 1.60)

M2 3,303.64 679 1.46 (1.44, 1.49)

opt 1
M1 1,200.70 2,972 1.16 (1.15, 1.16)

M2 981.97 2,699 1.12 (1.12, 1.13)

par-mnemonics

orig
M1 4,419.53 1,027 1.51 (1.47, 1.54)

M2 2,977.83 761 1.41 (1.38, 1.45)

opt 1
M1 1,106.22 3,290 1.13 (1.13, 1.14)

M2 905.19 2,989 1.11 (1.11, 1.12)

opt 2
M1 880.09 3,241 1.10 (1.10, 1.11)

M2 764.63 3,436 1.09 (1.08, 1.09)

scrabble orig
M1 310.84 1,481 1.43 (1.42, 1.44)

M2 187.09 2,151 1.23 (1.22, 1.23)

▪ Negative correlation between CPS and overhead
▪ PCC: -0.96, considering all workloads on M1 and M2
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Overhead Evaluation

Benchmark Version Machine
Time
[ms]

CPS
Overhead

Factor 95% CI

mnemonics

orig
M1 4,944.72 915 1.55 (1.51, 1.60)

M2 3,303.64 679 1.46 (1.44, 1.49)

opt 1
M1 1,200.70 2,972 1.16 (1.15, 1.16)

M2 981.97 2,699 1.12 (1.12, 1.13)

par-mnemonics

orig
M1 4,419.53 1,027 1.51 (1.47, 1.54)

M2 2,977.83 761 1.41 (1.38, 1.45)

opt 1
M1 1,106.22 3,290 1.13 (1.13, 1.14)

M2 905.19 2,989 1.11 (1.11, 1.12)

opt 2
M1 880.09 3,241 1.10 (1.10, 1.11)

M2 764.63 3,436 1.09 (1.08, 1.09)

scrabble orig
M1 310.84 1,481 1.43 (1.42, 1.44)

M2 187.09 2,151 1.23 (1.22, 1.23)

JEDI (mean)
M1 1.13

M2 1.15

OpenJDK (mean)
M1 1.07

M2 1.06 81



Limitations

▪ Limitations of the technique:

▪ Additional sources of perturbation (e.g., prevention of JIT 
compiler optimizations) are not compensated

▪ The profiles produced using our technique are platform 
dependent and require the availability of per-thread virtualized 
reference-cycle counters 
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Summary of Contributions

▪ New technique enabling cycle-accurate profiling of stream 
executions 

▪ Implemented in StreamProf, a novel stream profiler for the JVM

▪ Uses a perturbation-compensation technique

▪ Analysis of Renaissance, revealing previously unknown stream-
related performance issues

▪ Optimization of two stream-based workloads from Renaissance

▪ Average speedup: 3.94x 

▪ Evaluation results show that our profiling technique is efficient 
and yields accurate profiles
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Thanks a lot for your attention!
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