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➢ A modern, open, and diversified benchmark suite for the JVM

➢ Focused on concurrency and parallelism

➢ Contains modern workloads and popular systems, frameworks and applications

➢ Exercises many programming paradigms: concurrent, parallel, functional

and object-oriented programming

➢ Aimed at testing JIT compilers, garbage collectors, profilers, analyzers, …

➢ Main publication:

● A. Prokopec et al., "Renaissance: Benchmarking Suite 

for Parallel Applications on the JVM". PLDI 2019.

Renaissance Suite

2



➢ JVM is evolving

● New JVM features:

○ concurrency, lambdas, method-handles, non-blocking I/O, …
● New paradigms: 

○ data-parallelism, fork-join, streams, asynchronous programming with 

futures, transactional memory, ...

● New frameworks:

○ Big Data (Spark), stream-processing (JDK8 Streams, Rx), 

actors (Akka), network communication (Netty), …
➢ … many of them not represented by existing benchmark suites

Motivation
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➢ JIT compilers show similar performance on existing suites 

● Need for new workloads to demonstrate performance gains

when exploring compiler optimizations

➢ JIT optimizations rarely focus on concurrency-related primitives

● Need for new workloads including concurrency- 

and parallelism-related constructs

Motivation
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➢ Use of modern concurrency primitives: 

● data-parallelism, task-parallelism, streaming and pipelined parallelism, 

message-based concurrency, software transactional memory, lock-based and 

lock-free concurrent data structures, in-memory databases, asynchronous 

programming, network communication

➢ Realistic workloads using popular frameworks: 

● Java Streams, Apache Spark, Java Reactive Extensions, Java Fork/Join 

framework, ScalaSTM, Twitter Finagle

Selection Criteria
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➢ Workload diversity

● Exercise different concurrency-related features

while making use of object-oriented abstractions 

➢ Deterministic execution

➢ Open-source availability

● Enable inspection by the community, source-code level analysis, 

evaluation of actionability of profiler results

➢ Avoid known pitfalls of other suites

● Lack of benchmark source code, timeouts, resource leaks, 

data races, deadlocks

Selection Criteria
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➢ Gathered around 100 candidate workloads

● Manual search

● Automatic search with NAB [1]

Selection Criteria

7[1] A. Villazón et al. "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.

➢ Selected 25 benchmarks from them



Benchmark List (v 0.10)
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➢ Goal: ensure that Renaissance

● represents concurrency primitives better than existing suites

● exercises object-oriented abstractions similarly to existing suites

➢ Comparison with DaCapo [1], ScalaBench [2], SPECjvm2008 [3]

Diversity

9[3]  SPECjvm2008. https://www.spec.org/jvm2008/
[2] A. Sewe et al., "Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine". OOPSLA 2011.
[1] S. Blackburn et al., "The DaCapo Benchmarks: Java Benchmarking Development and Analysis". SIGPLAN Not. 41, 10 (Oct. 2006).



➢ Metrics:

Diversity
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➢ Metric collection on all benchmark suites

➢ Normalization over reference cycles

➢ Standardization to a [-1, 1] range

➢ Principal Component Analysis (PCA)

● Goal: visually demonstrate benchmark diversity

Diversity
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➢ PC1: object-oriented programming

● Renaissance similar to other suites

➢ PC2: concurrency primitives

● Renaissance much more spread along PC2

Principal Component Analysis



➢ PC3: concurrency primitives

● Renaissance more spread along PC3

➢ PC4: invokedynamic

● Reflects functional-style operations

Principal Component Analysis



➢ Conclusion: Renaissance

● is comparable to DaCapo and ScalaBench in terms of object-allocation rates 

and dynamic dispatch

● represents concurrency primitives better than existing suites 

● exercises invokedynamic more often

Principal Component Analysis
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➢ Goal (1): prove the utility of Renaissance by implementing

new compiler optimizations

● Optimizations inspired by the code patterns found in Renaissance

➢ Result: 4 new compiler optimizations

● Escape analysis with atomic operations

● Loop-wide lock coarsening 

● Atomic-operation coalescing

● Method-handle simplification

➢ Optimizations implemented in the Graal JIT compiler [1]

Compiler Optimizations

15[1] G. Duboscq et al., "An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler". VMIL 2013.



➢ Goal (2): show that Renaissance is more sensitive to existing compiler optimizations

● Renaissance can be used to better evaluate JIT compilers

➢ 3 existing optimizations

● Speculative guard movement

● Loop vectorization

● Dominance-based duplication simulation

Compiler Optimizations
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➢ have a significant impact on Renaissance benchmarks, while other suites benefit less 

from the optimizations.

Compiler Optimizations

Median: 6.4% 2.8% 1.8% 3.9%
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➢ Conclusion:

● The considered optimizations have a significant impact on Renaissance 

benchmarks, while other suites benefit less from the optimizations

➢ More details in the paper

Compiler Optimizations
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➢ We presented Renaissance, a new modern, open, and diversified 

benchmark suite for the JVM focused on concurrency and parallelism

➢ Renaissance contains diversified workloads

➢ Renaissance inspired 4 new compiler optimizations

➢ Renaissance is more sensitive to 3 existing compiler optimizations 

than existing benchmark suites

Conclusions
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➢ Renaissance can be downloaded at   https://renaissance.dev/

➢ Renaissance is an open suite

● Open source, contributions are welcome!

● Community can propose new benchmarks

● Committee votes on benchmarks for the next release

➢ Goal: keep improving and evolving the suite in an open manner

Conclusions
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➢ Contacts:

Walter Binder

walter.binder@usi.ch

Conclusions
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Thanks for your attention
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