
1Oracle Labs, Switzerland, 2Università della Svizzera italiana, Switzerland,
3Johannes Kepler Universität Linz, Austria, 4Charles University, Czech Republic,

5Universidad Privada Boliviana, Bolivia

Aleksandar Prokopec1, Andrea Rosà2, David Leopoldseder3,
Gilles Duboscq1, Petr Tu̇ma4, Martin Studener3, Lubomír Bulej4,
Yudi Zheng1, Alex Villazón5, Doug Simon1, Thomas Würthinger1,

Walter Binder2

Renaissance: Benchmarking Suite for
Parallel Applications on the JVM

➢ A modern, open, and diversified benchmark suite for the JVM

➢ Focused on concurrency and parallelism

➢ Contains modern workloads and popular systems, frameworks and applications

➢ Exercises many programming paradigms: concurrent, parallel, functional

and object-oriented programming

➢ Aimed at testing JIT compilers, garbage collectors, profilers, analyzers, …

➢ Main publication:

● A. Prokopec et al., "Renaissance: Benchmarking Suite

for Parallel Applications on the JVM". PLDI 2019.

Renaissance Suite

2

➢ JVM is evolving

● New JVM features:

○ concurrency, lambdas, method-handles, non-blocking I/O, …
● New paradigms:

○ data-parallelism, fork-join, streams, asynchronous programming with

futures, transactional memory, ...

● New frameworks:

○ Big Data (Spark), stream-processing (JDK8 Streams, Rx),

actors (Akka), network communication (Netty), …
➢ … many of them not represented by existing benchmark suites

Motivation

3

➢ JIT compilers show similar performance on existing suites

● Need for new workloads to demonstrate performance gains

when exploring compiler optimizations

➢ JIT optimizations rarely focus on concurrency-related primitives

● Need for new workloads including concurrency-

and parallelism-related constructs

Motivation

4

➢ Use of modern concurrency primitives:

● data-parallelism, task-parallelism, streaming and pipelined parallelism,

message-based concurrency, software transactional memory, lock-based and

lock-free concurrent data structures, in-memory databases, asynchronous

programming, network communication

➢ Realistic workloads using popular frameworks:

● Java Streams, Apache Spark, Java Reactive Extensions, Java Fork/Join

framework, ScalaSTM, Twitter Finagle

Selection Criteria

5

➢ Workload diversity

● Exercise different concurrency-related features

while making use of object-oriented abstractions

➢ Deterministic execution

➢ Open-source availability

● Enable inspection by the community, source-code level analysis,

evaluation of actionability of profiler results

➢ Avoid known pitfalls of other suites

● Lack of benchmark source code, timeouts, resource leaks,

data races, deadlocks

Selection Criteria

6

➢ Gathered around 100 candidate workloads

● Manual search

● Automatic search with NAB [1]

Selection Criteria

7[1] A. Villazón et al. "Automated Large-scale Multi-language Dynamic Program Analysis in the Wild". ECOOP 2019.

➢ Selected 25 benchmarks from them

Benchmark List (v 0.10)

8

➢ Goal: ensure that Renaissance

● represents concurrency primitives better than existing suites

● exercises object-oriented abstractions similarly to existing suites

➢ Comparison with DaCapo [1], ScalaBench [2], SPECjvm2008 [3]

Diversity

9[3] SPECjvm2008. https://www.spec.org/jvm2008/
[2] A. Sewe et al., "Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine". OOPSLA 2011.
[1] S. Blackburn et al., "The DaCapo Benchmarks: Java Benchmarking Development and Analysis". SIGPLAN Not. 41, 10 (Oct. 2006).

➢ Metrics:

Diversity

10

Concurrency

primitives

Object-oriented

programming

New JVM features

➢ Metric collection on all benchmark suites

➢ Normalization over reference cycles

➢ Standardization to a [-1, 1] range

➢ Principal Component Analysis (PCA)

● Goal: visually demonstrate benchmark diversity

Diversity

11

➢ PC1: object-oriented programming

● Renaissance similar to other suites

➢ PC2: concurrency primitives

● Renaissance much more spread along PC2

Principal Component Analysis

➢ PC3: concurrency primitives

● Renaissance more spread along PC3

➢ PC4: invokedynamic

● Reflects functional-style operations

Principal Component Analysis

➢ Conclusion: Renaissance

● is comparable to DaCapo and ScalaBench in terms of object-allocation rates

and dynamic dispatch

● represents concurrency primitives better than existing suites

● exercises invokedynamic more often

Principal Component Analysis

14

➢ Goal (1): prove the utility of Renaissance by implementing

new compiler optimizations

● Optimizations inspired by the code patterns found in Renaissance

➢ Result: 4 new compiler optimizations

● Escape analysis with atomic operations

● Loop-wide lock coarsening

● Atomic-operation coalescing

● Method-handle simplification

➢ Optimizations implemented in the Graal JIT compiler [1]

Compiler Optimizations

15[1] G. Duboscq et al., "An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler". VMIL 2013.

➢ Goal (2): show that Renaissance is more sensitive to existing compiler optimizations

● Renaissance can be used to better evaluate JIT compilers

➢ 3 existing optimizations

● Speculative guard movement

● Loop vectorization

● Dominance-based duplication simulation

Compiler Optimizations

16

➢ have a significant impact on Renaissance benchmarks, while other suites benefit less

from the optimizations.

Compiler Optimizations

Median: 6.4% 2.8% 1.8% 3.9%

17

➢ Conclusion:

● The considered optimizations have a significant impact on Renaissance

benchmarks, while other suites benefit less from the optimizations

➢ More details in the paper

Compiler Optimizations

18

➢ We presented Renaissance, a new modern, open, and diversified

benchmark suite for the JVM focused on concurrency and parallelism

➢ Renaissance contains diversified workloads

➢ Renaissance inspired 4 new compiler optimizations

➢ Renaissance is more sensitive to 3 existing compiler optimizations

than existing benchmark suites

Conclusions

19

➢ Renaissance can be downloaded at https://renaissance.dev/

➢ Renaissance is an open suite

● Open source, contributions are welcome!

● Community can propose new benchmarks

● Committee votes on benchmarks for the next release

➢ Goal: keep improving and evolving the suite in an open manner

Conclusions

20

➢ Contacts:

Walter Binder

walter.binder@usi.ch

Conclusions

21

Thanks for your attention

mailto:walter.binder@usi.ch

