

Renaissance: Benchmarking Suite for Parallel Applications on the JVM

Aleksandar Prokopec¹, Andrea Rosà², David Leopoldseder³, Gilles Duboscq¹, Petr Tùma⁴, Martin Studener³, Lubomír Bulej⁴, Yudi Zheng¹, Alex Villazón⁵, Doug Simon¹, Thomas Würthinger¹, <u>Walter Binder²</u>

¹Oracle Labs, Switzerland, ²Università della Svizzera italiana, Switzerland, ³Johannes Kepler Universität Linz, Austria, ⁴Charles University, Czech Republic, ⁵Universidad Privada Boliviana, Bolivia

- A modern, open, and diversified benchmark suite for the JVM
- Focused on concurrency and parallelism
- Contains modern workloads and popular systems, frameworks and applications
- Exercises many programming paradigms: concurrent, parallel, functional and object-oriented programming
- Aimed at testing JIT compilers, garbage collectors, profilers, analyzers, …
- Main publication:
 - A. Prokopec et al., "Renaissance: Benchmarking Suite for Parallel Applications on the JVM". **PLDI 2019**.

Motivation

- JVM is evolving
 - New JVM features:
 - concurrency, lambdas, method-handles, non-blocking I/O, ...
 - New paradigms:
 - data-parallelism, fork-join, streams, asynchronous programming with futures, transactional memory, ...
 - New frameworks:
 - Big Data (Spark), stream-processing (JDK8 Streams, Rx), actors (Akka), network communication (Netty), ...
- > ... many of them not represented by existing benchmark suites

- JIT compilers show similar performance on existing suites
 - Need for new workloads to demonstrate performance gains when exploring compiler optimizations
- JIT optimizations rarely focus on concurrency-related primitives
 - Need for new workloads including concurrency-

and parallelism-related constructs

- Use of modern concurrency primitives:
 - data-parallelism, task-parallelism, streaming and pipelined parallelism, message-based concurrency, software transactional memory, lock-based and lock-free concurrent data structures, in-memory databases, asynchronous programming, network communication
- Realistic workloads using popular frameworks:
 - Java Streams, Apache Spark, Java Reactive Extensions, Java Fork/Join framework, ScalaSTM, Twitter Finagle

- Workload diversity
 - Exercise different concurrency-related features

while making use of object-oriented abstractions

- Deterministic execution
- Open-source availability
 - Enable inspection by the community, source-code level analysis, evaluation of actionability of profiler results
- Avoid known pitfalls of other suites
 - Lack of benchmark source code, timeouts, resource leaks,

data races, deadlocks

- Gathered around 100 candidate workloads
 - Manual search
 - Automatic search with NAB [1]
- Selected 25 benchmarks from them

Benchmark List (v 0.10)

Benchmark	Description	Focus	
akka-uct	Unbalanced Cobwebbed Tree computation using Akka.	actors, message-passing	
als	Alternating Least Squares algorithm using Spark.	data-parallel, compute-bound	
chi-square	Computes a Chi-Square Test in parallel using Spark ML.	data-parallel, machine learning	
db-shootout	Parallel shootout test on Java in-memory databases.	query-processing, data structs.	
dec-tree	Classification decision tree algorithm using Spark ML.	data-parallel, machine learning	
dotty	Compiles a Scala codebase using the Dotty compiler.	data-structures, synchronization	
finagle-chirper	Simulates a microblogging service using Twitter Finagle.	network stack, futures, atomics	
finagle-http	Simulates a high server load with Twitter Finagle and Netty.	network stack, message-passing	
fj-kmeans	K-means algorithm using the Fork/Join framework.	task-parallel, conc. data structs.	
future-genetic	Genetic algorithm function optimization using Jenetics.	task-parallel, contention	
gauss-mix	Computes a Gaussian mixture model.	machine learning	
log-regression	Performs logistic regression on a large dataset.	data-parallel, machine learning	
mnemonics	Solves the phone mnemonics problem using JDK streams.	streaming	
movie-lens	Recommender for the MovieLens dataset using Spark ML.	data-parallel, compute-bound	
naive-bayes	Multinomial Naive Bayes algorithm using Spark ML.	data-parallel, machine learning	
neo4j-analytics	Analytical queries and transactions on the Neo4J database.	query processing, transactions	
page-rank	PageRank using the Apache Spark framework.	data-parallel, atomics	
par-mnemonics	Solves the phone mnemonics problem using parallel streams.	. parallel streaming	
philosophers	Dining philosophers using the ScalaSTM framework.	STM, atomics, guarded blocks	
reactors	A set of message-passing workloads encoded in Reactors.	actors, msg-passing, critical sect.	
rx-scrabble	Solves the Scrabble puzzle using the RxJava framework.	streaming	
scala-kmeans	Runs the K-Means algorithm using Scala collections.	machine learning	
scala-stm-bench7	STMBench7 workload using the ScalaSTM framework.	STM, atomics	
scrabble	Solves the Scrabble puzzle using Java 8 Streams.	data-parallel, memory-bound	
streams-mnemonics	Computes phone mnemonics using Java 8 Streams.	data-parallel, memory-bound	

- Goal: ensure that Renaissance
 - represents concurrency primitives better than existing suites
 - exercises object-oriented abstractions similarly to existing suites
- Comparison with DaCapo [1], ScalaBench [2], SPECjvm2008 [3]

[1] S. Blackburn et al., "The DaCapo Benchmarks: Java Benchmarking Development and Analysis". SIGPLAN Not. 41, 10 (Oct. 2006).
[2] A. Sewe et al., "Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine". OOPSLA 2011.
[3] SPECjvm2008. https://www.spec.org/jvm2008/

Diversity

> Metrics:

5

h

Name	Description	
synch	synchronized methods and blocks executed.	
wait	Invocations of Object.wait().	
notify	Invocations of Object.notify() and Object.notifyAll().	
atomic	Atomic operations executed.	Concurrency
park	Park operations.	,
сри	Average CPU utilization (user and kernel).	primitives
cachemiss	Cache misses, including L1 cache (instruction and data), last-	
	layer cache (LLC), and translation lookaside buffer (TLB; in-	
	struction and data).	
object	Objects allocated.	
array	Arrays allocated.	Object-oriented
method	Methods invoked with invokevirtual, invokeinterface or	programming
	invokedynamic bytecodes.	
idynamic	invokedynamic bytecodes executed.	New JVM features

- Metric collection on all benchmark suites
- Normalization over reference cycles
- Standardization to a [-1, 1] range
- Principal Component Analysis (PCA)
 - Goal: visually demonstrate benchmark diversity

US

Principal Component Analysis

PCI		PC2		
Metric	Loading	Metric	Loading	
object	+0.50	atomic	+0.67	
сри	-0.49	park	+0.65	
method	+0.44	method	+0.20	
array	+0.40	notify	+0.18	
idynamic	+0.27	idynamic	-0.17	
synch	-0.17	сри	-0.16	
notify	-0.13	cachemiss	-0.08	
atomic	-0.13	object	+0.05	
cachemiss	-0.07	array	-0.03	
park	-0.06	synch	-0.02	
wait	-0.02	wait	-0.00	

- PC1: object-oriented programming
 - Renaissance similar to other suites
- PC2: concurrency primitives
 - Renaissance much more spread along PC2

Principal Component Analysis

PC3		PC4		
Metric	Loading	Metric	Loading	
cachemiss	+0.58	idynamic	+0.56	
notify	+0.50	array	+0.42	
wait	+0.41	notify	+0.42	
сри	-0.28	method	-0.35	
synch	-0.25	cachemiss	+0.28	
park	-0.20	сри	+0.22	
idynamic	-0.18	atomic	+0.18	
array	-0.13	wait	-0.15	
method	+0.10	object	+0.13	
object	-0.04	synch	+0.11	
atomic	-0.03	park	+0.05	

- PC3: concurrency primitives
 - Renaissance more spread along PC3

PC4: invokedynamic

• Reflects functional-style operations

Principal Component Analysis

- Conclusion: Renaissance
 - is comparable to DaCapo and ScalaBench in terms of object-allocation rates and dynamic dispatch
 - represents concurrency primitives better than existing suites
 - exercises invokedynamic more often

- Goal (1): prove the utility of Renaissance by implementing
 - new compiler optimizations
 - Optimizations inspired by the code patterns found in Renaissance
- Result: 4 new compiler optimizations
 - Escape analysis with atomic operations
 - Loop-wide lock coarsening
 - Atomic-operation coalescing
 - Method-handle simplification
- Optimizations implemented in the Graal JIT compiler [1]

[1] G. Duboscq et al., "An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler". VMIL 2013.

Compiler Optimizations

- Goal (2): show that Renaissance is more sensitive to existing compiler optimizations
 - Renaissance can be used to better evaluate JIT compilers
- 3 existing optimizations
 - Speculative guard movement
 - Loop vectorization
 - Dominance-based duplication simulation

Compiler Optimizations

Median:	6.4%	2.8%	1.8%	3.9%	 ♥ slowdown >25% △ speedup 0-25% ▲ speedup >25%
escape analysis with atomics		▽ ◇ │ △ ▽ △ ○ ○ ▽ ▼ ▼ ○ ◇ ○	▲ ↓ · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
loop lock - coarsening	- · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·
atomics coalescing		Δ	· · · · · · · · · · · · · · · · · · ·		
method handle simplification			→ → → → → → → → → → → → → → → → → → →		
guard _ motion	- ^ <u> </u>	▲ ▲ ▽ ▲ ▽ △ → △ →			
loop - vectorization		• • • • • • • • • • • • • • • • • • • •			• • • •
duplication - simulation			• • • • • • • • • • • • • • • • • • •		• <u>^</u> • • • • • • • • • • • • • • • • • • •
	akka-uct als chi-square dec-tree db-shootout db-shootout di-shootout db-shootout fj-kmeans dj-kmeans fj-kmaans fj-kmeans fj-kmeans fj-kmeans fj-kmeans fj-kmeans fj-km	scalatest scaladoc scaladoc scaladoc scaladoc scaladoc scalatest scalatest scalatest scalatest scalatest scalatest	tum avrora batik batik eclipse fop bnd jython lundex pmd sunflow sunflow tradebeans tradebeans tradescop	compiler.compiler compiler.sunflow compress crypto.aes crypto.signverify derby mpegaudio scimark.fft.large	scimark.lu.small mark.monte_carlo scimark.sor.large scimark.sor.small mark.sparse.large nark.sparse.large nark.sparse.large scimal sunflow xml.transform xml.transform
	Renaissance	ScalaBench	DaCapo	SPECjvm2008	scir scin scin

slowdown 0-25%

 ∇

Compiler Optimizations

- > Conclusion:
 - The considered optimizations have a significant impact on Renaissance benchmarks, while other suites benefit less from the optimizations
- More details in the paper

- We presented Renaissance, a new modern, open, and diversified benchmark suite for the JVM focused on concurrency and parallelism
- Renaissance contains diversified workloads
- Renaissance inspired 4 new compiler optimizations
- Renaissance is more sensitive to 3 existing compiler optimizations

than existing benchmark suites

https://renaissance.dev/

- Renaissance can be downloaded at
- Renaissance is an open suite
 - Open source, contributions are welcome!
 - Community can propose new benchmarks
 - Committee votes on benchmarks for the next release
- Goal: keep improving and evolving the suite in an open manner

Conclusions

Thanks for your attention

➤ Contacts:

Walter Binder

walter.binder@usi.ch

