
Automated Large-scale Multi-language
Dynamic Program Analysis in the Wild

Alex Villazón1, Haiyang Sun2, Andrea Rosà2, Eduardo Rosales2, Daniele Bonetta3,
Isabella Defilippis1, Sergio Oporto1, Walter Binder2

1Universidad Privada Bolivia (UPB), Bolivia
2Università della Svizzera italiana (USI), Switzerland

3Oracle Labs, United States

Our Work
● Goal: Propose a methodology for automatically applying

Dynamic Program Analysis (DPA) at a large-scale
on projects hosted in public open-source repositories

● Motivation:
○ Applying DPA in large code repositories is increasingly important
○ Existing infrastructures focus mainly on static analysis

2

● Automatically looks for executable code in public repositories
○ E.g., GitHub

● Filters out projects according to user-defined criteria
○ E.g., programming language, date of last commit, # contributors

● Attempts to apply DPA on workloads that can be automatically executed
○ E.g., tests (via build systems such as Maven, NPM, SBT)

● Uses containerization (Docker)
○ Simplified distributed deployment to increase scalability
○ Easy to integrate different runtimes; support for multiple languages
○ Natural and efficient sandboxing to protect from buggy or malicious code

NAB: A Distributed Infrastructure
for Automated DPA at Large Scale

3

NAB Architecture

4

NAB Architecture

NAB-Crawler: crawls and mines code repositories,
 determine projects to analyze (according to user-defined criteria)

5

NAB Architecture

NAB-Analyzer: clones code from repositories, builds code,
 runs DPA on executable workloads

6

NAB Architecture

MongoDB: stores DPA results, metrics, and execution statistics

7

NAB Architecture

● Reports reasons of failures
● Configurable analysis timeout (default: 1 hour)

8

NAB Architecture

Plugin: mechanism to integrate existing DPA

9

NAB Architecture

NAB-Master: orchestrates the distribution of crawling and DPA activities

10

NAB Architecture

NAB-Dashboard: handles deployment of NAB services (using Docker Swarm),
 allows users to monitor DPA progress

11

NAB Architecture

MQTT Broker: handles asynchronous communication through events
 (publish-subscribe communication protocol)

12

Case Studies
I Use of promises in Node.js applications
II JIT-unfriendly code patterns in Node.js applications
III Discovering Java and Scala task-parallel workloads

for domain-specific benchmarking

● Codebase:
○ 5 years (2013-2017) of Node.js, Java,

and Scala projects from GitHub

7.6 M projects

56 K projects

13

Case Study III: Discovering Task-parallel
Workloads for Java and Scala
● Goal: Discover Java and Scala task-parallel workloads

with diverse task granularity to analyze concurrency-related aspects
○ Granularity: number of bytecode instructions

executed by a parallel task
● DPA: tgp [1] task granularity profiler

● Collects granularity of all spawned tasks
○ Task = subtypes of Runnable, Callable,

 ForkJoinTask

[1] Rosà et al., Analyzing and Optimizing Task Granularity on the JVM. CGO 2018

14

● 1,769 projects successfully analyzed
with task-parallel workloads

● Two workloads with granularities
spanning all ranges

○ https://github.com/rolfl/MicroBench
○ https://github.com/47Billion/netty-http

● Good candidates for benchmarking
task execution in Java workloads

Case Study III: Results (1/2)
Java workloads

15

Case Study III: Results (2/2)
Scala workloads

● 860 projects successfully analyzed
with task-parallel workloads

● Three workloads with granularities
spanning all ranges

○ https://github.com/iheartradio/asobu
○ https://github.com/TiarkRompf/

virtualization-lms-core
○ https://github.com/ryanlsg/

gbf-raidfinder

● Good candidates for benchmarking
task execution in Scala workloads

16

Conclusions
● NAB: novel, distributed infrastructure

for executing massive custom DPA on open-source code repositories
● Scalability, supporting Cloud-based deployment
● Fault-tolerance mechanisms
● Safety thanks to sandboxing of unknown code

● Presented case study:
Discovering task-parallel workloads for Java and Scala

○ We identified five candidate workloads to benchmarking
task parallelism on the JVM

17

NAB
● Evaluation version at

http://research.upb.edu/NAB/nab-artifact.tgz

● Contact:
Walter Binder
walter.binder@usi.ch

Thanks for your attention

18

http://research.upb.edu/NAB/nab-artifact.tgz

