
When Things Turn Sour at Big Data Clusters:
Understanding Unsuccessful Executions

Andrea Rosà∗, Lydia Y. Chen†, Walter Binder∗
∗Università della Svizzera Italiana, Faculty of Informatics, Lugano, Switzerland

†IBM Research Zurich Lab, Rueschlikon, Switzerland

Goal

I Provide a better understanding of unsuccessful executions:
I their performance impact
I their characteristics
I their relationship with application and machine attributes

I In multi-purpose and multi-tenancy datacenters

Motivations

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12x 10
6

Priority

N
u

m
b

e
r 

o
f 

e
v
e

n
ts

 

 
Eviction
Fail
Kill
Finish

I Failures are very frequent in large-scale datacenters [1]
I Software and hardware failures turn into critical performance impediment

I Big clusters are complex:
I Jobs with high number of tasks fanout; tasks subjected to multiple events
I Tasks have different priority and resource constraints
I Several types of unsuccessful executions: eviction, fail, kill
I Resulting analysis is challenging

I At all priorities, a lot of unsuccessful executions:
I Eviction, fail and kill happen at all priorities
I Both jobs and tasks have high probability to fail
I Non negligible resource waste and slowdown of the application performance

Data set

I Google cluster trace [2]
I Jobs composed of multiple tasks, which experience multiple events
I Jobs, tasks, and events are classified into different types, depending on their outcome:

I Unsuccessful: eviction, fail, kill
I Successful: finish
I Tasks are classified based on their final event
I Job type is given directly by the trace
I We focus on unsuccessful jobs, tasks, and events

I Sizeable datacenter:
I 12k+ machines; 672k+ jobs; 25M+ tasks; 48M+ events

I A lot of information provided:
I Task priority
I Arrival, scheduling and ending timestamps
I Machine equipped resources
I Task requested and used resources

I Heterogeneous and dynamic workload [3]

Time waste

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

x 10
9

Priority

T
im

e
 [
s
]

 

 
Resubmission
Queue
Running

Fail

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

x 10
9

Priority

T
im

e
 [
s
]

 

 
Resubmission
Queue
Running

Finish

I Task execution time divided into three time intervals:
I Resubmission time (from previous failure to arrival)
I Queue time (from arrival to scheduling)
I Running time (from scheduling to ending)

I Large amount of wasted time:
I Successful tasks only use a portion of computational time
I A lot of time is spent into useless operations

Acknowledgments

This work has been supported by the Swiss National Science Foundation (project 200021 141002).

Resource waste

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2x 10
8

Priority

R
e
s
o
u
rc

e
 d

e
m

a
n
d
 [
R

E
S

 x
 s

]

 

 
CPU
RAM
DISK

Eviction

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2x 10
8

Priority

R
e
s
o
u
rc

e
 d

e
m

a
n
d
 [
R

E
S

 x
 s

]

 

 CPU
RAM
DISK

Finish

I Analysis on resource demand:
I Definition: average amount of used or requested resources × running time
I Two kinds of resource demand:

I Requested demand: how many resources have been allocated to tasks, and how long
I Used demand: how many resources have been used by tasks, and how long

I Three types of resources: CPU, RAM, DISK
I At all priorities, high wasted resource demand

Time-varying behavior

0 100 200 300 400 500 600 700
0

5

10

x 10
4

Time [h]

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

 

 
Eviction
Mean

Eviction

0 100 200 300 400 500 600 700
0

5

10

x 10
4

Time [h]

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

 

 
Kill
Mean

Kill

I Unsuccessful events over time
I How often and when jobs and tasks fail
I Unstable trends of unsuccessful executions
I Fitting of inter-type times shows that unsuccessful executions can be approximated

by heavy-tailed theoretical distributions

Autocorrelation

0 30 60 90 120 150

0

0.5

1

Time [h]

A
u
to

c
o
rr

e
la

ti
o
n

Eviction

I Dependency of unsuccessful executions with themselves
I Analysis of autocorrelation functions for each type of unsuccessful executions
I Strong time dependencies in first few hours

I Unsuccessful events tend to happen repetitively on a subset of tasks
I Similar frequencies of events in adjacent hours

I Unsuccessful executions could be described by Moving Average models

Root causes of evictions

0 50 100 150 200 250
0

0.01

0.02

Utilization / Reservation [%]

P
ro

b
a
b
ili

ty
 o

f 
e
v
ic

ti
o
n

 

 
Used CPU
Used RAM
Requested CPU
Requested RAM

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Priority

P
e
rc

e
n
ta

g
e
 o

f 
ta

s
k
s

 

 
Kick−in
Kicked−out

I Machine saturation level vs. eviction
I Identification of concurrent tasks (running on the same machine at eviction time)
I Computation of two different saturation levels:

I Reservation level: total amount of requested resources / machine equipped resources
I Utilization level: total amount of used resources / machine equipped resources

I Peak of eviction events when machines are near saturation
I Task priority vs. eviction

I Identification of kick-in and kicked-out tasks:
I Kick-in: tasks whose scheduling caused the eviction process
I Kicked-out: tasks descheduled to free resources for the kick-in ones

I Key role of priority in the eviction process

References

[1] L. Barroso, J. Dean, and U. Hölzle. Web Search for a Planet: The Google Cluster Architecture. IEEE
Micro, 23(2):22–28, Mar. 2003.

[2] J. Wilkes. More Google cluster data. Google research blog.
https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1, Nov 2011.

[3] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity and dynamicity of
clouds at scale: Google trace analysis. In ACM SoCC, pages 7:1–7:13, 2012.

https://code.google.com/p/googleclusterdata/ wiki/ClusterData2011_1

