
Median: 6.4% 2.8% 1.8% 3.9%

Renaissance ScalaBench [2] DaCapo [3] SPECjvm2008 [4]

[1] G. Duboscq et al., An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler. VMIL 2013.  
[2] S. Blackburn et al., The DaCapo Benchmarks: Java Benchmarking Development and Analysis. SIGPLAN Not. 41, 10 (Oct. 2006).
[3] A. Sewe et al., Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine. OOPSLA 2011.
[4] SPECjvm2008. https://www.spec.org/jvm2008/ 
[5] A. Prokopec et al., Renaissance: Benchmarking Suite for Parallel Applications on the JVM. PLDI 2019.  

Renaissance Suite
• Renaissance is a modern, open, and diversified benchmark suite for the

JVM, aimed at testing JIT compilers, garbage collectors, profilers, analyzers
and other tools.

• Renaissance contains many modern workloads, comprising various popular
systems, frameworks and applications made for the JVM.

• Renaissance benchmarks exercise several programming paradigms,
including concurrent, parallel, functional and object-oriented programming.

Renaissance Suite 
A Modern Benchmark Suite for Parallel Applications on the JVM

Aleksandar Prokopec Andrea Rosà David Leopoldseder Gilles Duboscq
Petr Tuma Martin Studener Lubomír Bulej Yudi Zheng
Alex Villazón Doug Simon Thomas Würthinger Walter Binder

1 2 3

4

1

1

11

4 3

5 2

1
4

Oracle Labs, Switzerland Università della Svizzera italiana, Switzerland Johannes Kepler Universität Linz, Austria
Charles University, Czech Republic Universidad Privada Boliviana, Bolivia

2 3
5

Metric Loading

object
cpu
method
array
idynamic
synch
notify
atomic
cachemiss
park
wait

+0.50
-0.49
+0.44
+0.40
+0.27
-0.17
-0.13
-0.13
-0.07
-0.06
-0.02

atomic
park
method
notify
idynamic
cpu
cachemiss
object
array
synch
wait

+0.67
+0.65
+0.20
+0.18
-0.17
-0.16
-0.08
+0.05
-0.03
-0.02
-0.00

cachemiss
notify
wait 
cpu
synch
park
idynamic
array
method
object
atomic

+0.58
+0.50
+0.41
-0.28
-0.25
-0.20
-0.18
-0.13
+0.10
-0.04
-0.03

idynamic
array
notify
method
cachemiss
cpu
atomic
wait
object
synch
park

+0.56
+0.42
+0.42
-0.35
+0.28
+0.22
+0.18
-0.15
+0.13
+0.11
+0.05

Metric Loading Metric Loading Metric Loading
PC1 PC2 PC3 PC4

Benchmark List

akka-uct 
als 
chi-square
db-shootout
dec-tree 
dotty
finagle-chirper
finagle-http
fj-kmeans
future-genetic
gauss-mix
log-regression
mnemonics
movie-lens
naive-bayes
neo4j-analytics
page-rank
par-mnemonics
philosophers
reactors 
rx-scrabble
scala-kmeans
scala-stm-bench7
scrabble
streams-mnemonics

Unbalanced Cobwebbed Tree computation using Akka.
Alternating Least Squares algorithm using Spark.  
Computes a Chi-Square Test in parallel using Spark ML.
Parallel shootout test on Java in-memory databases.
Classification decision tree algorithm using Spark ML.
Compiles a Scala codebase using the Dotty compiler.
Simulates a microblogging service using Twitter Finagle.
Simulates a high server load with Twitter Finagle and Netty.
K-means algorithm using the Fork/Join framework.
Genetic algorithm function optimization using Jenetics.  
Computes a Gaussian mixture model.
Performs logistic regression on a large dataset. 
Solves the phone mnemonics problem using JDK streams.  
Recommender for the MovieLens dataset using Spark ML.  
Multinomial Naive Bayes algorithm using Spark ML.  
Analytical queries and transactions on the Neo4J database. 
PageRank using the Apache Spark framework.  
Solves the phone mnemonics problem using parallel streams.
Dining philosophers using the ScalaSTM framework.  
A set of message-passing workloads encoded in Reactors.
Solves the Scrabble puzzle using the RxJava framework.  
Runs the K-Means algorithm using Scala collections.  
STMBench7 workload using the ScalaSTM framework.  
Solves the Scrabble puzzle using Java 8 Streams.  
Computes phone mnemonics using Java 8 Streams.

Benchmark Description
actors, message-passing 
data-parallel, compute-bound
data-parallel, machine learning
query-processing, data structs.
data-parallel, machine learning
data-structures, synchronization
network stack, futures, atomics
network stack, message-passing
task-parallel, conc. data structs.
task-parallel, contention
machine learning 
data-parallel, machine learning
streaming 
data-parallel, compute-bound
data-parallel, machine learning 
query processing, transactions
data-parallel, atomics 
parallel streaming 
STM, atomics, guarded blocks 
actors, msg-passing, critical sect.
streaming 
machine learning 
STM, atomics 
data-parallel, memory-bound
data-parallel, memory-bound

Focus

Motivation
• Many modern programming abstractions (e.g., Java Lambdas, Streams,

Futures) are not represented in existing benchmark suites.

• State-of-the-art JIT compilers show similar performance on existing suites.
We need new workloads to demonstrate performance gains when
exploring compiler optimizations.

• Optimizations in existing JIT compilers rarely focus on concurrency-
related primitives. We need new workloads including concurrency- and
parallelism-related constructs.

Evaluation

Additional Information

Selection Criteria
• Use of modern concurrency primitives: data-parallelism, task-

parallelism, streaming and pipelined parallelism, message-based
concurrency, software transactional memory, lock-based and lock-free
concurrent data structures, in-memory databases, asynchronous
programming, network communication.

• Realistic workloads using popular frameworks: Java Streams, Apache
Spark, Java Reactive Extensions, Java Fork/Join framework, ScalaSTM,
Twitter Finagle.

• Workload diversity. Benchmarks should exercise different concurrency-
related features (e.g., atomic instructions, Java synchronized blocks, thread-
park operations, guarded blocks). At the same time, benchmarks should
make use of abstractions commonly associated with object-oriented
programs, i.e., frequent object allocation and virtual dispatch.

• Deterministic execution (as much as possible).

• Open-source availability to enable the inspection of the workloads by
the community, source-code level analysis, and the evaluation of the
actionability of profiler results.

• Avoid known pitfalls of other suites, such as lack of benchmark source
code, use of timeouts, resource leaks, data races, deadlocks.

• Renaissance represents concurrency primitives better than existing suites, is
comparable to DaCapo and ScalaBench in terms of object-allocation rates
and dynamic dispatch, and exercises invokedynamic more often.

Diversity

• 4 new compiler optimizations (escape analysis with atomic operations,
loop-wide lock coarsening, atomic-operation coalescing, method-handle
simplification) and 3 existing optimizations (speculative guard movement,
loop vectorization, dominance-based duplication simulation) implemented
in the Graal compiler [1] have a significant impact on Renaissance
benchmarks, while other suites benefit less from the optimizations.

Compiler Optimizations

Principal
Component

Analysis

Performance

• Renaissance can be downloaded at:

https://renaissance.dev/

• Renaissance is completely open source. Check out our
GitHub repository!

• More detailed information and analyses can be found  
in our PLDI’19 paper [5].

• Renaissance is part of an ongoing, collaborative
project in which the community can propose and
improve benchmark workloads. Your contribution is
welcome!

Acknowledgments: This work has been supported by Oracle (ERO project 1332).

https://www.spec.org/jvm2008/
https://renaissance.dev/

