
Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

 Daniele Bonetta
Oracle Labs

Dynamic Speculative Optimizations
for SQL Compilation in

Apache Spark
 Filippo Schiavio

USI Lugano
 Walter Binder
USI Lugano

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Apache Spark SQL

Apache Spark: de-facto standard for distributed data processing

● Spark-SQL: Spark API for processing structured data

● Can process data stored in multiple formats (e.g. JSON, CSV, …)

● Leverages code-generation to optimize query execution

2

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Code Generation in Spark SQL

3

SQL Query
DataFrame

Execution Plan Java Code

Query
Planning

Code
Generation

SELECT SUM(price)
FROM orders
WHERE shipdate BETWEEN
date '1994-01-01'
AND date '1994-12-31'

public void compute(Data input) {
 while (input.hasNext()) {
 Row row = input.parseNext();
 Date date = row.getDate("shipdate");
 if (date.compareTo('1994-01-01') < 0)
 continue;
 if (date.compareTo('1994-12-31') > 0)
 continue;
 accumulate(row.getDouble("price"));
 }
}

Aggregate

Table
Scan

Filter

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Code Generation in Spark SQL

Missing optimization opportunities: multiple data formats and modular design

● Spark generates generic, data-format independent code

● Generality in code-generation impairs performance

○ Parsing could be part of query execution

○ Predicates could be evaluated without allocating Java objects

4

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Dynamic Speculative Optimizations

● Generating code that can re-optimize itself depending on runtime conditions

● Two main optimizations:

○ Speculative specializations for data access (Spark-SDA)

○ Speculative specializations for predicate evaluation (Spark-SP)

5

● TPC-H speedups (up to):

○ Local mode: 8.45x (CSV) - 4.9x (JSON)

○ Distributed mode: 4.4x (CSV) - 2.6x (JSON)

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Opt 1: Specialized Data Access (Spark-SDA)

Vanilla
Spark

Spark-SDA

6

HDFS

Data Access - Library Code

Hadoop
File

Reader
Parser

Query Execution - Generated Code

Stage 1 Stages
2..N

HDFS

Data Access - Library Code Query Execution - Generated Code

Parser
+

Stage 1
Stages
2..N

Hadoop
File

Reader

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Spark-SDA (Specialized Data Access)

● Integrates a specialized parser for textual data formats: CSV and JSON

● CSV: Incremental parsing (combine parsing and query execution)

○ Skip unused fields

○ Reorder predicate evaluation according to fields’ order

● JSON: Speculative incremental parsing

○ JSON values may not be declared in a specified order

○ Practically, in most of the cases they are actually ordered

○ Generated code can assume a stable order (otherwise, fallback to a generic parser)

7

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Generating Efficient Speculative Code

● Naive approach for generating speculative code
○ Add a condition that checks the speculative assumption (e.g., JSON fields are ordered)
○ May introduce very high overhead if many rows do not meet the assumption

● Our approach: generating Truffle [1] nodes instead of plain Java code

[1] Practical partial evaluation for high-performance dynamic language runtimes. T. Würthinger et al. PLDI ‘17

8

Generated code
(Truffle nodes)

Speculative
assumption

Runtime profiling Assumption holds

De-optimize
JIT-compile

generic code

JIT-compile
based on

assumption

Assumption invalidated?

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Example of Generated Code (Spark-SDA)

Generated by Spark Generated by Spark-SDA
while (input.hasNext()) {

 Row row = input.parseNext();

 Date date = row.getDate("shipdate");

 if (date.compareTo('1994-01-01') < 0)

 continue;

 if (date.compareTo('1994-12-31') > 0)

 continue;

 accumulate(row.getDouble("price"));

}

while (input.hasNext()) {

 skip();

 int pos_price = lazyAccess();

 Date date = materialize(lazyAccess());

 if (date.compareTo('1994-01-01') < 0)

 continue;

 if (date.compareTo('1994-12-31') > 0)

 continue;

 accumulate(materialize(pos_price));

}

SELECT SUM(price) FROM orders WHERE shipdate BETWEEN date '1994-01-01' AND date '1994-12-31'

Eager
Parsing

9

CSV Schema: | id:num | price:decimal | shipdate:date | ... other fields … |

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Opt 2: Specialized Predicates (Spark-SP)

● Incremental and speculative parsing in generated code allows executing

predicates on raw data (e.g., directly on byte arrays)

● Predicate evaluation on raw data can leverage a speculative approach

● E.g., predicates on date fields may speculate on the expected date format

10

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Example of Generated Code (Spark-SP)

Generated by Spark-SDA Generated by Spark-SP
while (input.hasNext()) {

 skip();

 int pos_price = lazyAccess();

 Date date = materialize(lazyAccess());

 if (date.compareTo('1994-01-01') < 0)

 continue;

 if (date.compareTo('1994-12-31') > 0)

 continue;

 accumulate(materialize(pos_price));

}

while (input.hasNext()) {

 skip();

 int pos_price = lazyAccess();

 int pos_date = lazyAccess();

 cursor = datePredicate(pos_date);

 if(cursor == -1)

 continue;

 accumulate(materialize(pos_price));

}

Avoidable
Allocation

11

SELECT SUM(price) FROM orders WHERE shipdate BETWEEN date '1994-01-01' AND date '1994-12-31'

CSV Schema: | id:num | price:decimal | shipdate:date | ... other fields … |

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Setup:
● Spark 2.4 (local mode)
● Machine:

○ 8 cores, 2.7GHz
○ 128GB RAM

Performance Evaluation (TPC-H)

CSV Dataset
(Scale Factor 30)

JSON Dataset
(Scale Factor 10)

12

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Limitations and Future Work

● Predicate evaluation order depends on fields declaration order
○ Intuition: parsing is an expensive operation, evaluating predicates ASAP may reduce such cost

○ Depending on predicates evaluation cost, selectivities, and the cost of parsing other fields,

postponing a predicate may be more efficient

● Future work
○ Runtime predicate reordering through profiling and re-compilation

13

Dynamic Speculative Optimizations for SQL Compilation in Apache Spark

Thanks!
Dynamic Speculative Optimizations for SQL

Compilation in Apache Spark

Filippo Schiavio
filippo.schiavio@usi.ch

