
Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Language-Agnostic Integrated Queries in
a Managed Polyglot Runtime

 Daniele Bonetta
Oracle Labs

 Filippo Schiavio
USI Lugano

 Walter Binder
USI Lugano

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Data Analytics is “in-the-language”

● Modern data processing & analytics are often implemented “in the language”

● Adoption of ad-hoc solutions, avoiding “external” runtime systems (RDBMs)

● Data analytics are commonly implemented in dynamic languages [1]

[1] https://www.kaggle.com/kaggle-survey-2019

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

DataFrames & Embedded DB

○ Often show suboptimal performance

○ Tabular data structure with typed columns

● DataFrames

● Embedded DB

○ Emerging embedded DBs allow in-situ query execution

○ Often they require defining a schema in advance and a data ingestion phase

● Limited support for querying arbitrary heterogeneous data structures in-situ

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Language Integrated Query

● Language Integrated Query (LINQ) Frameworks

○ Flexible solution which integrates all language features in the query engine

○ In-situ query processing on any iterable, i.e., directly on the heap of the runtime

○ State-of-the-art optimizations leverage static ahead-of-time (AOT) query compilation

● Challenge: compiling queries in dynamic languages

○ How to compile “SELECT COUNT(*) FROM T WHERE x < y” with T collection of dynamic objects?

○ The implementation of the less-than operator depends on the runtime types of x, y

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Polyglot Query Engine

● Challenge: compiling queries in multiple dynamic languages

● Dynamic languages have different syntax and semantics but share a set of abstract operations

○ E.g., property reads, array accesses, function calls

● A query engine for dynamically typed collections can be designed by abstracting the semantics

of a specific language

○ Implementation should focus on query operators and engine optimizations

○ Decoupling them from (language-dependent) data-access operations

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

● Query compilers commonly rely on static (AOT) compilation

○ Dynamic languages are not considered suitable for AOT compilation

○ At compilation time the compiler is not aware of runtime types

○ Generated code needs to consider all possible types

● Modern dynamic-language runtimes employ dynamic (JIT) compilation

○ Program execution starts in “interpreted mode”, while the VM collects runtime information (e.g., observed types)

○ Program compilation takes place during interpreted execution, so the compiler is aware observed types

● JIT compilers of VMs can be used to compile SQL queries, not just “regular” user code

Dynamic Compilation to the Rescue!

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

DynQ Overview

● DynQ is a language-agnostic query-engine integrated in GraalVM

● Simply imported as a library from any language executed on GraalVM

● Implements the backend of a SQL query compiler

○ Built on Truffle language implementation framework [1]

[1] T. Würthinger et al. Practical partial evaluation for high-performance dynamic language runtimes. PLDI (2017)

○ Directly interacts with underlying JIT compiler (Graal)

○ Exploits dynamic compilation optimizations (e.g., polymorphic inline caching and loop unrolling)

○ Frontend of the compiler could be any SQL planner (currently Apache Calcite)

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Query on a JavaScript Array

T = [{x: 1, y: 2}, {x: 2, y: 1}, …]; // assuming x, y are integers for all items

result = DynQ('SELECT COUNT(*) FROM T WHERE x < y',T);

executeMethodAfterJITCompilation() {
 result = 0;
 for(i = 0; i < numElements; i++) {
 row = // read i-th array element
 x = // read property "x" of row
 y = // read property "y" of row
 // Type checking for LessThan
 if(/* x and y are integers */) {
 if(x < y) result++;
 }
 else {
 deoptimize();
 }
 }
 return result;
}

TableScan

Predicate

Count LessThan

ReadMember(x) ReadMember(y)

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Query on a JavaScript Array
 Python

T = [{x: 1, y: 2}, {x: 2, y: 1}, …]; // assuming x, y are integers for all items

result = DynQ('SELECT COUNT(*) FROM T WHERE x < y',T);

executeMethodAfterJITCompilation() {
 result = 0;
 for(i = 0; i < numElements; i++) {
 row = // read i-th array element
 x = // read property "x" of row
 y = // read property "y" of row
 // Type checking for LessThan
 if(/* x and y are integers */) {
 if(x < y) result++;
 }
 else {
 deoptimize();
 }
 }
 return result;
}

Only difference
is data access

TableScan

Predicate

Count LessThan

ReadMember(x) ReadMember(y)

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Query on a Polymorphic Array

T = [{x: 1, y: 2}, {x: 2, y: 1}, … , {x: Date('2000-01-01'), y: Date('2000-01-02')}];

result = DynQ('SELECT COUNT(*) FROM T WHERE x < y',T);

executeMethodAfterJITCompilation() {
 result = 0;
 for(i = 0; i < numElements; i++) {
 row = // read i-th array element
 x = // read property "x" of row
 y = // read property "y" of row
 // Type checking for LessThan
 if(/* x and y are integers */) {
 if(x < y) result++;
 }
 else {
 deoptimize();
 }
 }
 return result;
}

JIT Compilation
TableScan

Predicate

Count LessThan

ReadMember(x) ReadMember(y)

JIT Compilation

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Query on a Polymorphic Array

T = [{x: 1, y: 2}, {x: 2, y: 1}, … , {x: Date('2000-01-01'), y: Date('2000-01-02')},…];

result = DynQ('SELECT COUNT(*) FROM T WHERE x < y',T);

executeMethodAfterJITCompilation() {
 result = 0;
 for(i = 0; i < numElements; i++) {
 row = // read i-th array element
 x = // read property "x" of row
 y = // read property "y" of row
 // Type checking for LessThan
 if(/* x and y are integers */) {
 if(x < y) result++;
 }
 else {
 deoptimize();
 }
 }
 return result;
}

TableScan

Predicate

Count LessThan

ReadMember(x) ReadMember(y)

Unexpected Type!
deoptimize: jump
back to interpreter

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Query on a Polymorphic Array

T = [{x: 1, y: 2}, {x: 2, y: 1}, … , {x: Date('2000-01-01'), y: Date('2000-01-02')},…];

result = DynQ('SELECT COUNT(*) FROM T WHERE x < y',T);

executeMethodAfterJITCompilation() {
 result = 0;
 for(i = 0; i < numElements; i++) {
 row = // read i-th array element
 x = // read property "x" of row
 y = // read property "y" of row
 // Type checking for LessThan
 if(/* x and y are integers */) {
 if(x < y) result++;
 }
 else if(/* x and y are dates */) {
 if(x.isBefore(y)) result++;
 } else { deoptimize(); }
 }
 return result;
}

TableScan

Predicate

Count LessThan

ReadMember(x) ReadMember(y)

JIT Compilation (2)

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

DynQ Evaluation

● Evaluation on multiple programming languages and different settings

● Realistic benchmark (TPC-H)

● Micro benchmark - simple queries on TPC-H dataset - from stream-fusion [1]
● Evaluation on RLang against

○ DuckDB 0.2.0 R package [2] (df / preload)

○ data.table R package [3] (see paper)

● Evaluation on JS against

○ AfterBurnerDB [4]

○ Lodash library [5] (see paper)

[1] S. Amir, M. Dashti, C. Koch. Push versus pull-based loop fusion in query engines. Journal of Functional Programming (2018)
[2] H. Mühleisen, M. Raasveldt and DuckDB Contributors. DuckDB: DBI Package for the DuckDB Database Management System (2021)
[3] M. Dowle, A. Srinivasan. data.table: Extension of data.frame. CRAN.R (2021)
[4] E.G. Kareem, J. Lin. In-browser Interactive SQL Analytics with AfterBurner. SIGMOD (2017)
[5] Lodash Team. Lodash. https://lodash.com/ (2020)

https://lodash.com/

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

DynQ Evaluation (R - Latency)

● On small datasets, query interpretation is usually faster than compilation

● Thanks to dynamic compilation, query compilation overhead is not an upfront performance penalty

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

DynQ Evaluation (JavaScript)

● Evaluation against AfterBurnerDB using a DynQ adapter for AfterBurner

columnar layout (<1k lines of code)

● Faster than AfterBurnerDB on its own memory layout in most of the queries

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Conclusions

● We presented DynQ, a novel query engine based on JIT compilation

● To the best of our knowledge, DynQ is the first system which executes queries

in-situ on object collections from (multiple) dynamic languages

● Our evaluation shows that the flexibility of DynQ does not impair performance

● Future work: DynQ as a standalone library

○ Integrating DynQ in existing data-processing systems

Language-Agnostic Integrated Queries in a Managed Polyglot Runtime

Thanks!

Filippo Schiavio
filippo.schiavio@usi.ch

Language-Agnostic Integrated Queries in a
Managed Polyglot Runtime

