
Actor Profiling on the JVM

Andrea Rosà

PhD candidate

Dynamic Analysis Group

Università della Svizzera italiana (USI)

Lugano, Switzerland

VMM 2016

September 1st, 2016

Overview

• In this talk, we will discuss and answer the following

questions:

• Why is it necessary to profile actors?

• Which metrics should we focus on when profiling?

• How to profile actors?

• Why is it useful?

• Focus of this talk:

• Java Virtual Machine

• Akka actor library

2

Background

3

• Atomic entities communicating via

message exchange

• Continuously listen for incoming

messages

• Execute work in response to a

message

Actors

4

• Properties:

• Cannot share state

• Communicate only via asynchronous messages

• Opaque addressing

Actors in practice

• Applications:

• Computing workers (e.g., Signal/Collect)

• Communication endpoints (e.g., Apache Spark, Apache

Flink)

• Used in several commercial products (e.g., Amazon’s

SimpleDB, Facebook Chat System, WhatsApp)

• …

5

• In general, there is a shortage of profilers for actors

• Not much effective when analyzing actors

Actor profiling

6

Metrics

• Executed computations

• Initialization cost

• Actor utilization

7

Useful for

computing workers

• Messages sent

• Messages received

Useful for

communication

endpoints

• Focus of other profilers: mailbox size, time in mailbox,

errors, dispatchers, …

• Collect most useful metrics according to how actors are

used

Akka actor instrumentation

• Actors

• Constructors

• Send methods

• Receive methods

• Thread-local bytecode counters

• Basic blocks (for maintaining counters)

8

Subtypes of akka.actor.Actor

tell [!] / ask [?]

Receive PartialFunction

Challenges

9

actor A {...}

actor B {

B() {...}

}

actor C subtype of B {

C() {

B();

A a = new A();

...

}

}

// constructor of B

// constructor of C

// account to current actor

// account to new actor

• Multiple constructors

• Nested actor creation

• Multiple sending methods

• Multiple receiving methods

• …

Incorrect accounting

1

2

3

4

5

6

7

8

9

10

11

Use cases

10

Actor utilization

• Goal:

• Analyze the effectiveness of parallelism in an application

using only actors to obtain concurrency

• Why profiling actors?

• Concurrency depends on actors, not on other constructs
(Runnable, Future, etc.)

11

Actor utilization

• Target application:

• Savina benchmark suite [1]

• 30 benchmarks

• 10 different actor libraries for the JVM

• Uses only actors to obtain concurrency

12

[1] S. M. Imam and V. Sarkar. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor Libraries.

In AGERE!, pages 67–80, 2014.

Actor utilization

13

Benchmark
Actors Messages Utilization

types # # types AVG STD 20th perc. 50th perc. 80th perc.

barber 5007 7 41474 10 304 14844 4 4 4

bitonicsort 190525 16 2674789 8 12 127 6 6 7

count 6 5 1000008 7 150864 292090 0 315 341271

facloc 1370 5 743792 9 253 6314 2 4 21

fib 150052 4 450149 6 285 915 4 22 289

filterbank 66 14 1419465 11 20819 114765 5 580 3784

fjcreate 40004 4 80003 5 3 3 3 3 3

pingpong 6 5 120006 10 28394 45128 0 321 77835

recmatmul 25 5 1818 8 4969990 10166347 4 5 11649055

Low utilization (U < 10)

• 2 benchmarks utilize actors scarcely on average

• 20% of actors are little utilized in 9 benchmarks

• 50% of actors are little utilized in 5 benchmarks

• 80% of actors are little utilized in 3 benchmarks

• Number of actors spawned is high

• Number of messages is high

Actor utilization

14

Benchmark
Actors Messages Utilization

types # # types AVG STD 20th perc. 50th perc. 80th perc.

barber 5007 7 41474 10 304 14844 4 4 4

bitonicsort 190525 16 2674789 8 12 127 6 6 7

count 6 5 1000008 7 150864 292090 0 315 341271

facloc 1370 5 743792 9 253 6314 2 4 21

fib 150052 4 450149 6 285 915 4 22 289

filterbank 66 14 1419465 11 20819 114765 5 580 3784

fjcreate 40004 4 80003 5 3 3 3 3 3

pingpong 6 5 120006 10 28394 45128 0 321 77835

recmatmul 25 5 1818 8 4969990 10166347 4 5 11649055

Low utilization (U < 10)

• Possible optimizations:

• Remove some actors

• Redesign assignment of work to actors

Actor utilization

15

High utilization (U > 100000)

Benchmark
Actors Messages Utilization

types # # types AVG STD 20th perc. 50th perc. 80th perc.

bndbuffer 85 6 160204 10 700944 222883 757762 769162 783645

count 6 5 1000008 7 150864 292090 0 315 341271

nqueenk 25 5 29140 9 1060159 542017 615780 1303146 1368435

piprecision 25 5 8673 9 1858180 949326 1105397 2309469 2358476

recmatmul 25 5 1818 8 4969990 10166347 4 5 11649055

sieve 15 5 91343 8 145413 152496 315 96522 303587

uct 199977 5 879898 13 572591 95530 491944 573138 651467

• 7 benchmarks show high average actor utilization

• Possible optimization (depending on available resources):

• Add more actors

Load balancing

• Goal:

• Understand if load is well balanced among workers in

parallel processing frameworks

• Why profiling actors?

• Actors are the key entities carrying on computations

16

Load balancing

• Target framework:

• Signal/Collect [2]

• Framework for graph computations

• Uses Akka actors as computing workers

• Vertices = computational entities

• Edges = messages used by vertices to interact

17

[2] P. Stutz, A. Bernstein, and W. Cohen. Signal/Collect: Graph Algorithms for the (Semantic) Web. In ISWC, pages

764–780, 2010.

Load balancing

• Computing work is balanced

• Signal distribution is balanced

18

Executed bytecodes Messages sent Messages received

[%
]

0

20

40

60

80

100

12.5 12.0 12.4

12.5 12.8 12.5

12.4 12.3 13.2

12.5 12.4 11.9

12.6 13.1 12.4

12.4 12.6 12.8

12.6 12.7 12.3

12.5 12.2 12.4 1
2
3
4
5
6
7
8

PageRank on 8 workers

Communication

• Goal:

• Analyze communication between workers in distributed

computing frameworks

• Why profiling actors?

• Communication endpoints are frequently implemented by

actors

19

Communication

• Target frameworks:

• Apache Spark [3] and Apache Flink [4]

• Computing frameworks for big-data, machine learning,

graphs, streaming, etc.

• Actors handle communication between master and

workers (not computations)

20

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI, pages 1–14,

2012.

[4] Apache Flink. https://flink.apache.org.

Communication

• Great difference between Spark and Flink

• Worker: ~1.6k (Spark), ~25k (Flink)

• Master: ~4.1 k (Spark), ~110k (Flink)

21

Kmeans on 10M points

Input size (# points)
10k 100k 1M 10M

M
es

sa
g

es
 s

en
t

3600

3700

3800

3900

4000

4100

3774

4088

36513645

Communication

22

Master node only

Spark

Flink

• Exponential behavior

in Spark

• Message size is an

indicator of the

amount of

communication

• Unclear behavior in

Flink

• More investigation

is needed

Communication

• Kmeans always faster in Spark

• Difference as high as 7x

• Difference gets smaller with increasing data size

23

Input size (# points)
10k 100k 1M 10M

E
x

ec
u

ti
o

n
 t

im
e

[s
]

0

20

40

60

80

100
Spark
Flink

Conclusions and discussion

24

Conclusions

• Actors: many applications, few profilers

• Utilization and communication are key features of actors

• Profiling them can shed light on actor performance

• However, pay attention to pitfalls

• Profiling actors helps in the performance analysis of actor-

based applications

• Along several directions

25

Discussion

• Limitation of bytecode count:

• Cannot track code without bytecode representation (e.g.,

native methods, JVM internal functions)

• Work of different complexity is represented with the same

unit

• Susceptible to on-the-fly optimizations

• Bytecode count vs. machine instruction count

• Accuracy vs. portability

26

Discussion

• Complementary metrics:

• Machine instruction count

• CPU time

• Are actors always busy in carrying on computations?

• However, subjected from instrumentation perturbation,

unlike actor utilization

• Expand analysis on use cases

• Signal/Collect: load is balanced, but are actors mostly

active or idle?

• Flink: root causes of inefficient communication?

27

Thank you for the attention

• More information in:

• A. Rosà, L. Y. Chen, W. Binder, “Actor Profiling in Virtual Execution

Environments”. In GPCE’16.

• Contact details:

Andrea Rosà

andrea.rosa@usi.ch

http://www.inf.usi.ch/phd/rosaa

28

mailto:andrea.rosa@usi.ch
http://www.inf.usi.ch/phd/rosaa

