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Apache Spark SQL

Apache Spark: de-facto standard for distributed data processing

● Spark-SQL: Spark API for processing structured data

● Can process data stored in multiple formats (e.g. JSON, CSV, …)

● Leverages code generation to optimize query execution 
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Code Generation in Spark SQL
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SELECT SUM(price) 
FROM orders 
WHERE shipdate BETWEEN 
date '1994-01-01' 
AND date '1994-12-31'

public void compute(Data input) {
  while (input.hasNext()) {
    Row row = input.parseNext();
    Date date = row.getDate("shipdate");
    if (date.compareTo("1994-01-01") < 0)
      continue;
    if (date.compareTo("1994-12-31") > 0)
      continue;
    accumulate(row.getDouble("price"));
  }
}
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Table 
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Filter
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Code Generation in Spark SQL

Missing optimization opportunities: multiple data formats and modular design

● Spark generates generic, data-format independent code

● Generality in code generation impairs performance

○ Parsing could be part of query execution 

○ Predicates could be evaluated without allocating Java objects
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Dynamic Speculative Optimizations

● Generating code that can re-optimize itself depending on runtime conditions

● Two main optimizations:

○ Speculative specializations for data access (Spark-SDA)

○ Speculative specializations for predicate evaluation (Spark-SP)
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● TPC-H speedups (up to):

○ Local mode: 8.45x (CSV); 4.9x (JSON)

○ Distributed mode: 4.4x (CSV); 2.6x (JSON)
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Opt 1: Specialized Data Access (Spark-SDA)
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Spark-SDA
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Spark-SDA (Specialized Data Access)

● Integrates a specialized parser for textual data formats: CSV and JSON

● CSV: Incremental parsing (combine parsing and query execution)

○ Skip unused fields

○ Reorder predicate evaluation according to fields’ order

● JSON: Speculative incremental parsing

○ JSON values may not be declared in a specified order

○ Practically, in most of the cases they are actually ordered

○ Generated code can assume a stable order (otherwise, fallback to a generic parser)
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Generating Efficient Speculative Code

● Naive approach for generating speculative code
○ Add conditions that check the speculative assumption (e.g., JSON fields are ordered)

○ May introduce very high overhead if many rows do not meet the assumption

● Our approach: generating Truffle nodes instead of plain Java source code
○ Finer grained control on the compilation

○ Trigger re-compilation through deoptimization if speculative assumptions do not hold
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CSV-Parsing Nodes Generation (Spark-SDA)

● Specialized CSV de-serializer can exploit static information of a specific query
○ Used fields
○ Fields declaration order

● Three main categories of generated Truffle nodes
○ Skip nodes:

■ Skip a value without performing any data conversion

○ Lazy data-access nodes: 
■ Store the initial position of a field and its length 

○ Data-materialization nodes:
■ Materialize a field value from the original byte array, using positions computed during 

lazy-data-access operation
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JSON-Parsing Nodes Generation (Spark-SDA)

● JSON values may be declared in a different order, requiring a speculative 
approach for generating parser nodes:

○ We use the same categories of nodes described for CSV-parsing, but the generated 

nodes are wrapped in a new Truffle node

○ We invoke the original Spark code generator and the generated source code is wrapped 

in a second Truffle node

○ Nodes for lazy data-access and skip operations are extended with a guard which 

checks that the current field matches the expected one

○ If the matching function fails, the speculatively compiled node is de-optimized and 

replaced with the general node containing the code generated by Spark
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Example of Generated Code (Spark-SDA)

Generated by Spark Generated by Spark-SDA
while (input.hasNext()) {

  Row row = input.parseNext();

  Date date = row.getDate("shipdate");

  if (date.compareTo('1994-01-01') < 0)

    continue;

  if (date.compareTo('1994-12-31') > 0)

    continue;

  accumulate(row.getDouble("price"));

}

while (input.hasNext()) {

  skip();

  int pos_price = lazyAccess();

  Date date = materialize(lazyAccess());

  if (date.compareTo('1994-01-01') < 0)

    continue;

  if (date.compareTo('1994-12-31') > 0)

    continue;

  accumulate(materialize(pos_price));

}

SELECT SUM(price) FROM orders WHERE shipdate BETWEEN date '1994-01-01' AND date '1994-12-31'

Eager
Parsing
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CSV Schema: | id:num | price:decimal | shipdate:date | ... other fields … |
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Opt 2: Specialized Predicates (Spark-SP)

● Incremental and speculative parsing in generated code allows executing 

predicates on raw data (e.g., directly on byte arrays)

● Predicate evaluation on raw data can leverage a speculative approach

● E.g., predicates on date fields may speculate on the expected date format 
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Example of Generated Code (Spark-SP)

Generated by Spark-SDA Generated by Spark-SP
while (input.hasNext()) {

  skip();

  int pos_price = lazyAccess();

  Date date = materialize(lazyAccess());

  if (date.compareTo('1994-01-01') < 0)

    continue;

  if (date.compareTo('1994-12-31') > 0)

    continue;

  accumulate(materialize(pos_price));

}

while (input.hasNext()) {

  skip(); 

  int pos_price = lazyAccess();

  int pos_date = lazyAccess();

  cursor = datePredicate(pos_date);

  if(cursor == -1) 

    continue;

  accumulate(materialize(pos_price));

}

Avoidable
Allocation
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SELECT SUM(price) FROM orders WHERE shipdate BETWEEN date '1994-01-01' AND date '1994-12-31'

CSV Schema: | id:num | price:decimal | shipdate:date | ... other fields … |
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Setup:
● Spark 2.4 (local mode)
● Machine:

○ 8 cores, 2.7GHz
○ 128GB RAM

Performance Evaluation (TPC-H)

CSV Dataset
(Scale Factor 30)

JSON Dataset
(Scale Factor 10)

14



Dynamic Speculative Optimizations for SQL Execution in Apache Spark

Setup:
● Spark 2.4 (local mode)
● Machine:

○ 8 cores, 2.7GHz
○ 128GB RAM

Memory Pressure (TPC-H Q6)

CSV Dataset
(Scale Factor 10)
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Implementation
Heap Used

Total Memory for 
TLABs

# Garbage 
Collection 

Invocations

Spark 111 GB 255

Spark-SDA 13 GB 12

Spark-SP 600 MB 3  
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Limitations and Future Work

● Predicate evaluation order depends on fields declaration order
○ Intuition: parsing is an expensive operation, evaluating predicates ASAP may reduce such cost

○ Depending on predicates evaluation cost, selectivities, and the cost of parsing other fields, 

postponing a predicate may be more efficient

● Future work
○ Runtime predicate reordering through profiling and re-compilation

○ Applying similar data-processing optimizations to existing Truffle languages
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Thanks!
Filippo Schiavio
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